사관학교 수리문제 하나만 여쭤볼께요. 제발 내일 시험봐요 ㅠㅠ
게시글 주소: https://wwww.orbi.kr/0002976422
최대공약수가 5!, 최소공배수가 13!이 되는 두 자연수 k, n(k<=n)의 순서쌍 (k,n)의 개수는?
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
한의원 가서 침 맞으면 도움 좀 되나요?? 고개 조금만 숙이고 있어도 땡김..
-
공부하려고 책 펴도 힘들었던 일들이 계속 생각나고 집중할 수가 없음
-
탐구연계 0
탐구 수완 연계는 어느정도 유의미한가요.. 물리 화학 기준으로여 물리 수완 아직...
-
박석준T 듣는데 수업에서 연계 예상 이런건 잘 안 해주셔서... 출제기조 자체...
-
ㅈㄱㄴ
-
이건좀
-
짜피 고대 서강 성균관 밖에 안 썼는데.. 여기에서는 납치 당하고 싶어서요
-
얼버기 1
늦버기...
-
시작
-
강대x 2컷~2컷+8정도 나옴
-
오늘도 파이팅.
-
얼버기상 1
오늘도 또! 버러지 같이 시간을 낭비하겠군
-
에구궁 졸려 1
준비 갈 완료
-
하면 얼어죽을듯
-
하늘을 찌르는 SOXL + 트럼프 밈주 + 환율 폭등 1000만원으로 하루만에...
-
기하는 풀이 없는 것 같아서 올려봅니다. 28 빼고 시간재고 푼 풀이고 28은...
-
얼버기 1
앞줄 어느방은 2시부터 4시간동안 알람을 안꺼??
-
반팔 입어야징
-
얼버기 7
후후후
-
尹대통령, 오늘 대국민 담화·회견…대통령실 "모든 사안 설명" 1
국정쇄신 방안·명태균 논란·김여사 문제 등에 직접 답변 (서울=연합뉴스) 곽민서...
-
자세한 것은 눈 좀 붙이고 수업 끝난 후에 공지사항 올리겠음요. 공지사항 올라가면...
-
와 2도야 미친 2
ㄹㅇ 세종대왕님인가 ㅈㄴ 춥네
-
독서 사회,경제:아웃소싱->국제적으로(오프쇼어링)+경상수지...
-
생1에서 윤도영 아니면 만점 힘들 정도로 절대적임?
-
일탈행위의 발생과정에서 나타나는 상호작용에 주목하는가? 에 맞는게 차별적교제이론...
-
1. 대망의 첫 수능 이후 의과대학 성적과 수능 성적의 상관계수를 내본 논문의...
-
꼼꼼히 한다 하면 개념 얼마나 걸려요..???
-
얼버잠 1
다들 평안한 밤 되십시오. 소등하겠슴다.
-
책 왕창 빌리고 샀는데 시간 순삭이넴 글고 안 유명한데 재밌는 책 발견하면 좀 짜릿함ㅎ
-
진짜 집에 아직도 있는게 소름이넹 ㅋㅋㅋ
-
A 소유의 □□ 상가를 임차하여 창고업을 운영하고 있는 B는 미성년자 갑을 적법한...
-
얼버기 1
아파ㅓ 일찍자고 이제 일남
-
최저러라서 마지막 일주일동안 생윤 커리 하나만 더 듣고 마무리하고싶은데 뭘 하면...
-
인생이 X같아서 많이 들었음
-
세지 정법 둘 다 문제스타일이 굉장히 물화생지윤리사문역사에 비해 마음에 듦 ㅋㅋ
-
쿠팡 몰빵 4
누가 이기나보자
-
예비 고3입니다 4
지금 현재 10모 백분위 대략 99 초반이 떳는데 고3되면 어느정도 되나요?
-
수능 현장에서 볼 생명, 언매, 수학 개념 정리 자료 있을까요? 0
종이 몇장 정도 분량으로 생명이랑 언매, 수학만 있으면 될 듯 한데 혹시 이런 자료...
-
점수가 맨틀 뚫고 내핵까지 들어가는데 그냥 기출 복습이나 할까요.. ㅠㅠ
-
고양이 아니면 나한테 말걸지 말아줘
-
목표대학도 학과도 딱히 없는데 수학이 오를것같은데 자꾸 안오르고 국어성적이 아깝고
-
저랑 잡담하실분 4
못 잘 거 같음 ㅛ.........
-
공부 0
화났다가 재밌다가 괴롭다가 즐겁다가 힘들다가 신나다가 롤러코스터 상태
-
이해원 제외(이미 품)
-
창문열고 잔다.
-
ㄹㅇ 크게 먹으면 두 젓가락 정도 나올 양인 듯.. 좀 아쉽네
-
영하 2도 ㄷ
-
똥 먹어본 사람도
최대공약수가 5!이므로 5!은 일단 k랑 n이 둘다 가지고 있으므로 이렇게 쓸 수 있습니다.
k= 5!x a n=5!x b
그런데 최대공약수가 5!이므로 a와 b는 최대공약수가 1입니다. 따라서 최소공배수는 5! ab 가 될 것이고, a와 b는 '1 이외에 공약수를 갖지 않습니다.'
이 말인즉슨 a가 2라는 약수를 가지고 있다면 b는 2를 가지고 있으면 아니된다...는 말이죠.
그리고 최소공배수가 5!ab = 13! 이므로 ab = 6x...x13 = 2^n x 3^m x 5^q x 7^w x 11^r x 13^s 이런식으로 정리가 됩니다.
( 2, 3, 5, 7, 11, 13 의 제곱수들의 곱)
위에 a가 2를 가지면 b는 2를 가지면 안된다고 했죠? 그렇다면 2, 3, 5, 7, 11, 13 을 a b에 분배를 해주면 되는 것입니다.
(2가 a에 들어갈지 b에 들어갈지 2개중 1가지, 3이 a에 들어갈지 b에 들어갈지 2개중 1가지 .........)
따라서 전체 경우의 수는 2의 6제곱인데, a
아 소인수 분해가 키포인트였군요ㅋㅋ 대충 여기까진 짐작했는데 그냥 짝수 홀수로 나눠서 푸니까 답이 안나오지ㅎㅎㅎㅎ 감사감사감사합니다!!