미분가능성-개념탄탄하신분
게시글 주소: https://wwww.orbi.kr/0003073848
그림과같이 도함수가 저렇게 생겨있다면 x는 1에서 미분가능할까요?
우미분계수=좌미분계수=0 이므로 미분가능할껏같기도한데
x=1에서 미분계수 f'(1)=우미분계수=좌미분계수 아닌가요?
그럼 2=0=0 되버리는데
1.무엇이 논리적으로 잘못되는지 알고싶습니다.
2.또한 도함수가 저렇게 생겼으면 미분가능할까요?
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
약 먹는 동안은 이 시간에 밥을 먹으면 안되겠어요...
-
예측확률 99%일때 min 값이 가장 보수적으로 본건가요?
-
지구10모까지 평백 98 -> 수능백분위 54… 지구 유지 or 생윤(또는...
-
체지방을 줄이는걸 동시에 하는건 불가능한가
-
걍 수1특강도 할 걸 그랬나
-
호떡 먹고 싶어요 14
여행가서 먹은 그 맛이 잊혀지지 않네요 주변에 호떡 파는 곳이 없어서 울엇어...
-
메시와 호날두라 할 수 있다.
-
다군에 동국대 열린전공(인문)은 추합 얼마나 돌까요...??.? 70명 뽑고...
-
이거 태블릿 지급이라고 돼 있는데 사양 괜찮은가요? 2주전에 13인치 스마트탭 샀는데 반입 안되죠?
-
동일 학교 높공 버리고 상경 썼는데 벌써부터 미친듯이 후회중임 살자마려운데 +1이 답임?
-
어저께 그 도시락 또 있었음 ㅋㅋㅋㅋ 그거 먹을까 오만번 고민하다 결국 햇반만 사왔네요
-
왜긴왜야 모고 볼때마다 화1 인원자수 갈려나가던데 ㅋㅋㅋ 분명첨에 3모칠때...
-
하나 못풀었을때 멘탈이 갈릴듯 96이 목표면 두개 못풀었을때 멘탈이 갈릴듯 92가...
-
본인 여사친 존예에 씹인싸에 공부잘하는 명문자사고생인디 신남연 팬임 ㅇㅇ 신은 공평함
-
I love you 11
baby I'm not a monster 넌 알잖아 예전 내 모습을~
-
걍 가슴쪽이 좀만 아파도 어제 그 병원에서 과잉진료한거같고 그럼 내 피같은...
-
제 레어 언제 와요....
-
초성게임 시작(끝) 38
답 맞추면 5000덕 ㅅㅇ 12시 3분까지 받음뇨 기회 무제한 힌트:고유명사...
-
공부인증1일차 4
3모 23311가 목표입니다 앞으로 더 열심히 노력할게요 현역 문과정시파이터의...
-
고민 끝에 나온 답은 어느 걸 골라도 후회하는 것! 어차피 후회할 바에야 지금 편한 걸 고르라! 5
고민하지말고 닥치는대로 즉흥적으로 살기
-
올해안에 되긴할려나
-
그때부터 오르비 비호감됐는데 진짜 이상한사람들 많네
-
2025년 1월 1주차 韓日美全 음악 차트 TOP10 (+2024년 12월 4주차 주간VOCAL Character 랭킹) 2
2024년 12월 4주차 차트: https://orbi.kr/00071194122...
-
수강하신분 계신가여? 하셨다면 후기가 궁금하네요..
-
1번틀 98점 되고싶었음 물론실력은안됨
-
10명중 5명이나 점공을 했어요지금 1등이라 4명만 더 알면 되는데...
-
별론가
-
오르바에 07잇나요 22
1907년생
-
김현우 라이브 듣다가 너무 어려워서 드랍할 거같은데 공통은 김범준 인강 스블...
-
초성게임 시작 3
ㅅㅅ
-
재밌어요... 현역(진)인데 말이죠
-
내 예전 고민임
-
이거 맞지..? 포모 오네
-
ㅇㅈ 15
실시간 저녁 ㅇㅈ.
-
저랑 만나실 수 있는 데이트권을 드립니다 넵.
-
강기원T 수학 6
강기원T 수학 라이브 듣고 있는데 강의는 따라갈만한데 어싸가 너무 어려워요.. 고3...
-
물리 2 지구 1
물리2랑 지구1 중에 뭐가 더 2등급 하기 쉽나요? 둘다 처음합니다 다만 물2는...
-
07들이제들어오는데 예아피방재밌노 Wwwwww 이럴순없잖아요…
-
태양보단 대성이 더 잘 어울리는 느낌 뭔가...태양이 더 잘하긴 하는데 대성 보컬이...
-
2만덕 드림 나군 밖에 안 될 거 같아서 나군 기준으로 합니다 최초합 ~ 예비...
-
수학 실수는 대체 어떻게 하면 고칠 수 있음뇨?? 15
25 9모 3점 틀(24번인가 25번) + 22 29 사칙연산 틀 25 수능 5번...
-
물론 너무 낮은대학이 아닌이상은 ㄹㅇ 과가 더중요한거같은데
-
팔문둔갑 사문 개방
-
화학:기체추론,양자수추론,이온화 에너지 퍼즐,중화반응 << 시간관리 실패하면...
-
좁디좁은 시야로 예단하며 아는척을 하는걸 보면 재밌음 본인의 그릇으로 세상을 보되 깝치지는 말길
ㅇ,ㅇ
도함수가 x=1에서 연속이 아닙니다.
즉, lim(x->1)f`(x) = 0 은 맞는데 f`(1)은 정의되어있지 않기때문에 lim(x->1)f`(x)≠ f`(1) 입니다.
f`(1)이 정의되지 않기때문에 f(x)는 x=1에서 미분불가능입니다.
1. 도함수 f`(x)가 x=1에서 연속이 아니기때문에 f`(1)=우미분계수=좌미분계수가 성립되지 않습니다
2. f(x)는 x=1에서 미분불가능합니다
헐ㅋㅋ(1,2) 점찍혀잇는거구낰ㅋㅋ왜못봣짘ㅋㅋ
연속이 아니네요;;.. 미분 가능하면 연속이다.의 명제의 대우는 불연속이면 미분불가능하다. 위의 그래프는 불연속이므로 미분 불가능.
그건 원래 함수 일때 아닌가요? 이건 도함수요
http://orbi.kr/bbs/board.php?bo_table=xi_orbi_mat&wr_id=21347
예전 오르비에서 답을 찾았네요
문레기라 이해는 잘 못하겠지만 결론은 도함수의 연속과 함수의 미분가능성은 관련없다 같네요
교과과정에서 구멍 뚫린 도함수를 다루지 않아서 연속이라는 더 큰 범위로 설명할 뿐 위 경우는 도함수가 존재하므로 미분가능합니다.
f'(1)=2
실제로 저런 도함수는 존재할 수 없습니다.
하지만 출제자의 내공 부족으로 저렇게 출제가 된다면 "미분가능하다."라고 판단해줘야 합니다.
왜냐하면 위의 박근우님 말씀대로 f'(1)이 존재하기 때문이죠.
저 그래프에서 알수있는것은 f'(1)=2 이기 때문에 좌미분계수(평균변화율의 좌극한), 우미분계수(평균변화율의 우극한)가
모두 2라는 것입니다. 글쓴이께서 계산한건 좌미분계수가 아니고 "도함수의 좌극한값"입니다.
댓글을 여기까지 내려야만 정상적인 답글이 보이다니 ㄷㄷ.. 정말 정확한 답변.. 저런 도함수가 존재할 수 없는건데 ㅎㅎ
즉
x=1에서의 우미분계수= lim(x->1+0) f(x)-f(1) / x-1
이고
x=1에서의 도함수의 우극한 = lim(x->1+0) f'(x)
인데 둘은 명백히 다르다는 것이고, 당연히 미분계수의 정의로 미분계수를 구할 때는 위의 정의를 활용해야하는것이죠.
되게 유명한 함수인데
f(x)
=
(x=0) 0
(x=/=0) x sin(1/x)
f(x)
=
(x=0) 0
(x=/=0) x^2 sin(1/x)
... 이런 것들의 x=0에서의 미분계수도 구해보고 도함수의 연속성도 확인해보고 하세요.
아 그러니깐 우미분계수가 도함수의 우극한과는 다른개념이며 명백히 f'(1)=2 이여서 도함수의 연속과는 별도로 미분가능하다는 말씀이군요.감사합니다
미분함수가 빵꾸가 뚫릴순 있어도 저렇게 미분값이 따로 존재할순 없어요 저런 그래프의 원함수 그려보세요 못그려요
그리고 빵꾸만 뚫리면 미분가능함
그림이 참 멋쩌열
교육청인지는 모르겠는데 실제로 저렇게 문제 나온적 있습니다. 그리고 답도 미분 가능하다 였고요. 저거랑 똑같은 함수였는걸로 기억나네요
f ' (1)=2 로 1에서 미분가능합니다.
기출에 출제된 바 있습니다.
4점짜리로 기억합니다.
저렇게 도함수 그릴 수 잇는 함수가 어떻게 생겻는지 궁금하네요 ㄷ
난만한씨가 잘 지적해주셨는데요.
대학교 2학년 해석학 시간에 Darboux의 정리(사잇값 정리를 보다 일반화한 것입니다.)란 것을 배우면
"이런 도함수는 존재할 수 없다"는 것을 이해할 수 있습니다.
만약 모의고사에서 이런 문제가 출제되었다면 출제자가 문제를 잘못 출제하신 겁니다.
다만 도함수가 불연속인 경우는 존재할 수 있는데요.
이 경우 함수가 대단히 심하게 진동해야 돼요.
보통 이런 함수를 가리켜서 병리적 함수(pathological function)라 부르죠.
미분계수를 정의할 때 등장하는 좌미분계수와 우미분계수가 일치해야 한다는 개념과
도함수의 우극한과 좌극한이 일치해야 한다는 것은 서로 다른 별개의 개념입니다.
미적분학을 열심히 공부하다보면 한 번 정도 이 둘을 명확히 구분하기 위해서 머리가 지근지근 아파야 합니다. 일종의 성장통이죠. ㅎㅎ