극한문제 질문투척 ㅠㅠ
게시글 주소: https://wwww.orbi.kr/0003366754
함수 y=2x^2의 그래프위의점 p(t,2t^2)에대하여 점p를지나고 직선op와 수직인직선이 y축과만나는점의 y좌표를 f(t)라하자. 점P가 y=2x^2의 그래프를따라 원점에 한없이가까워질때
f(t)의값은 어떤값에한없이가까워지는가?.
이문제에서요 점p가 원점이랑 거의 동일해지면 원점과p를지나는선 그리고 op와수직인선이 거의 x축과y축이랑 비슷해져서 사실상 f(t)의값은 무한대가되지않나요?
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
[속보] 인권위 상임위원 "尹 탄핵하면 헌재 부숴 없애야…싸구려 정치용역업체" 2
"전한길 내가 무료변론하겠다" 국가인권위원회(인권위) 김용원 상임위원이 "만약...
-
궁금하다
-
교재패스 구매해서 이제 교재신청을 할려 했는데 아직 리드엔로직이 개강을 안해서...
-
정시기다리게되. 2
서울대야!! 조발!! 빨리!!!!!
-
경제 실모가 없는게 함정 시대컨 어캐구하냐
-
텅장 2
통장에 100만원만 있었으면 좋겠다
-
뭔가 최저 개높은데는 어차피 내 내신갖고 못갈거라는 생각때문에 간절하지가않음
-
뉴런 1
현역이고 작년에 사둔게 있어서 25뉴런 수12 하고잇는데 끝내고 26도 해야할까요?
-
정처기(혹은 정기운) 비서1급 전산회계1 or 2급 컴할 1 or 2급 봉사(헌혈) 준비할게 많네
-
왜 렉걸리지 0
짜증날 거 가튼
-
바로 0
리부트 정상화
-
오늘도 안하면 진짜 말라죽을것같음..
-
다들 정시 기다릴 때 10
수시 합격증 올리기
-
성대 A/B형 2
이거 제가 선택해서 제출했어야했나요 아니면 자동으로 되는건가요...?
-
리스닝을틀리네 진짜 하나만더맞으면 에피다는건데
-
오늘 머하지 1
강기분할까
-
메디컬로 살짝 빠지는거 빼면 거의 안 도나용
-
이해할 수가 없네
-
경찰대 0
입시 준비했던 사람?
-
설대 동일과목제한좀 풀어줘라
-
[단독]법원도 안갔는데 ‘폭도’ 몰아… 경찰, 허위폭로 ‘크리미널 윤’ 추적 1
얼굴사진 넣은 난동리스트 제작 인터넷·SNS 등서 떠돌아 피해 ‘서울서부지법 난동...
-
ㅇㅇ
-
오르비에서 열심히 활동하고 계신 선배님들이 새터에서 보자고 하셔서 그렇지..
-
뱃지만 얻기 4
메디컬은 가급적 대학 뱃지는 신청하지 않기
-
25수능 31311이고 영어 1등급 만들어야 합니다 수학 과탐한다고 영어 시간...
-
“옥린몽님 글 잘 보고 있는데 697점이면 붙을까요??” 근데 697점이면 최초합...
-
요즘은 나름 할만하다는 인식이 강한 거 같던데 90년대에 육군 운전병으로...
-
화2 질문 2
반응속도상수랑 온도랑 비례하나요 반응속도상수랑 반감기랑 반비례하나요 온도랑 반감기랑...
-
헌재 결정 무시하고… 민주당 ‘방송법 무력화’ 법안 발의 1
지상파 재허가 무한연장 노려 전광훈 목사 고발 등 강공모드 더불어민주당이...
-
하 이게 맞노 아직 예비인데(17번임) 하 여기에 동기가 있노
-
서울대는 정시 내신반영을 폐지하라!
-
ㅈ됐네....
-
아랫 부분 표는 주요 대학교 경영학과 취업률 현황인데, 취업률 산정은 다음 산식에...
-
아니 아무리 개념량이 적다고 해도 이거 이렇게 적어도 되는거 맞아요? 어제오늘...
-
미쳤네...
-
내 세뱃돈 ㅅㅂ
-
미적+사탐으로 지원했는데 붙은 상태에서 입소(?)하기 전에 확통으로 전환할 수...
-
아싸 뱃지달렸다 10
히히 신나
-
개원 병원 중에서 고려내과 성균관내과 한양내과는 한 번도 못 본듯…? 치과도...
-
있나요? 1학년때 내신이 망해서 2학년 때 올린 케이스인데 1학년 비중이 2학년...
-
성대 기숙사 0
정시 합격생인데 기숙사 신청은 2차부터 가능한걸로 알아요 2차에서 떨어질일은...
-
사문 교재 주문함... 10
마음의 고향 물리를 떠납니다...
-
글리는 파악 끝났는데 미점공자 0일시 상당히 낮아진 컷이 나올것 같고 경영만 구하면...
-
떴냐? (대학 아님) 17
떴으니까 올리지 ㅋㅋㅋ
-
ㅇㅂㄱ 2
오르비하다가 화면에서 귀신나오는 꿈 꿨음
-
경희대 자퇴 왜 안시켜줘ㅓ
-
간다
1/4나오는데요 op와 수직인선의 기울기가 거의 -무한대가 되는듯
1/2아닌가요???
F(t)=2t^2+1/4같은데
그렇게 어림짐작하지 말고 직접 f(t)를 구하세요.
어림짐작이아니라 이유가궁금해서요.. 제생각엔 무한대같은데 왜 값을갖게되는지..
OP와 수직인 선이 기울기가 계속 커지는 건 맞는데, P의 x좌표와 y좌표 또한 감소하고 있습니다. 그래서 f(t)가 발산한다고 단정하기엔 좀 그렇죠..;; 만약 t=0이 되었다고 했을 때 op와 수직인 선이 y축에 근접한다고 생각하면 y축 위의 모든 점이 그 선과 만나겠죠.
이 링크는 t=0.0001일 때 OP와 수직인 선을 나타내는 것입니다.
http://www.wolframalpha.com/input/?i=plot+y-2%280.0001%29%5E2%3D-5000%28x-0.0001%29
그래프까지..ㅠ감사합니다 이해해보려고 노력하게ㅐㅆ습니다!
아 그래프가 틀렸네요. 수정할때까지 기다려주세요.
수정했습니다.
질문자님의 의도에 맞는 답변을 드린다면
근사화의 직관으로 시도하신것 같은데
그 직관의 어디에 결함이 있는지 짚어보면
p 의 좌표가 원점으로 다가간다는것은 직선의 직선의 y절편이
작아지는데에 힘을 실어주는 요소이고
직선이 op와 수직이라는 점은 직선의 y절편이
커지는데에 힘을 실어주는 요소입니다.
이 두요소가 서로 경쟁하여 값이 0으로 수렴할지
무한대로 발산할지 0이아닌 상수로 수렴할지 결정되는 겁니다.
질문자 님께서는 수직이라는 점에만 초점을 맞추어서 직선이
벌떡~! 하고 일어서니까 무한대로 간다고 상상했는데
이것은 p가 0으로 다가감으로 주는 y절편의 감소효과를 간과한것이므로
잘못된것입니다.
물론 이문제를 직관으로도 오차없이 잘~ 째려보면
1/2 로 수렴함을 알수있습니다.
(힌트:원의성질+곡률반지름)
여기서 드리고 싶은 중요한 말이 있습니다.
직관적으로 푸는것 물론 좋습니다.
그러나 본인의 실력이 충분하지 않다면 직관적인 근사화로 푸는것은
상당히 위험합니다. 실력이 충분치 못하다면 그 직관에 중대한 오류가 있을수있는데
그것을 간과하게되면 ㅃ ㅇ ~ 인거죠
따라서 일단 정석적으로 푸ㅡㄴ 방법을 확실히 마스터 하시고
여유가 된다면 그때 그런방법을 연구하세요.
또 , 근사화를통한 직관이 본인스스로생각하기에 그다지
날카롭게 다듬어져있지 않다면 그냥 근사화를 포기하시고
정석으로 푸시는겁니다.
이 문제와 비슷한문제로써 포물선안에서 움직이는p점이있고 그 점을 지나는 원을그려서 반지름의극한을찾는문제였는데요 전 그문제에서도 p가 o에거의근접하면 반지름이0이될줄알았거든요 근데 과외선생님께서 아무리o에근접해도 곡률때문에 어느정도이하로는 작아질수없다고하더라구요.. 그부분에대해서 설명을좀해주시긴했는데 자세히들어가면 한참들어가야되서 설명해도모른다고하시더라구요ㅠㅠ 전 왜그렇게될수밖에없는지에대한 이유들이 자꾸 궁금한데 그런건 대학수학시간에배우나요? 아니면 공대나 수학과를가야 배울수있ㄱ는건지ㅠㅠ
거기에서도 곡률반지름에 대한 이해가 있으면 직관적으로도 구할수있습니다.
이문제는 지름의 길이가 답이고 님이 댓글에 다신 문제는
반지름이 답인데요.
곡률반지름이라는건 쉽게 풀어 설명하면 어떤 곡선의 특정한 점의위치에서의 곡선과 똑같은 곡률(꺾인정도)를
갖는 원의 반지름의 길이를 말하는 건데 , 이것은 대학교 과정이기는 하나
고등학교과정에서 배운것 만으로도 본인스스로 뼈를 깎는 고민을 해본다면 이와관련된
식을 유도해 낼수 있습니다. 실제로 제가 가르쳐본 학생중에 제가 논제를 툭 던져주고
약간의 힌트를 준다음 내버려둬 봤더니 끝끝내 혼자서 깨닫고 정리해내는 녀석이 있더라구요
이런 궁금증은 수학공부에 큰힘이 됩니다. 좋은 자세예요.
허나........ 님의 현재 실력이 여유있는 전국 상위 성적이 아니라면
어느정도까지에서 궁금함을 살짝접고 일단 기본고교과정에만 충실할 필요가 있습니다.
일종의 지적여유라고 할까요?
성적이 충분히 최상위이고 여유가 된다면 고민해볼만 합니다.
하지만 그렇지 않다면 급한불부터 끄시는게...(내신 및 수능 성적 을위한 공부.....)
정 궁금 하시면 제가 힌트를 드릴테니 고민해보셔도 좋습니다.
단, 추천하지는 않습니다.
제가 괜히 한 수험생의 시간을 잡아먹는 나쁜짓을 하게되지는 않을까 걱정입니다.
좋은 궁금증이고 수학시력향상에는 분명히 도움이 되지만... 시간제한이라는
입시생들의 벽 때문에...