6모 대비 ois 모고 후기(기하러)
게시글 주소: https://wwww.orbi.kr/00037832855
일단 기하러 모고가 많이 없는데 감사드립니다! 기하러들의 빛 손떨방(ois) 모고 굳굳
바로 후기 달립니다^-^
<공통>
13번 - 준킬 뇌절 딱^^ t1 t2라는 것을 근 2개라는 것을 생각해야하고, 무의식적으로 지수함수는 일대일함수라는 것이 배어있지 않으면 확신이 어려웠을 수도..!
14번 - 풀면서 되게 좋았습니다~ 함수의 극한 관련해서 정확한 지식이 없거나 무적권 로피탈 달리는 사람들 저격용이네요 ㅎㅎ
잘 알면 1분컷, 모르면 준킬러로 느껴지는 st라 요즘 트렌드를 잘 반영한 것 같습니다~
15번 - a3 + a4 조건을 위주로 해석하면 좋았던 문제! 개인적으로 대입해서 푸는 걸 좋아하는데 이번 문제는 대입러들이 유리했던 것 같습니다 ㅎㅎ
21번 - 결국 p가 제일 멀리 떨어져있는 원점 부터 거리 + 반지름 길이라는 것을 이용해야하는 문제~ 최대값 최소값은 d+-r인건 너무 많이 나오네요~
22번 - 식을 해체 했습니다. 제 머리로는 g(x)<=g(a) 조건이 한 번에 이해가 안되어서 쪼개서 t(x)<=0 으로 만들었더니 수월했습니다. 기하러들도 수2 열심히 합시다... ㅠ
<기하>
27번 - 조건이 특이해서 신기하네요! 걍 모르면 접할 때가 최선 ㅋㅋ
28번 - 시점이 같은 두 벡터의 합은 2배의 중점벡터로 본다! + 넓이 그리고 그 넓이가 움직인다! 4평에도 나왔던 소재라 익숙했네요~
29번 - 결국 포물선의 정의를 이용하여 합이 직선이 될 때가 최소가 된다는 것을 찾는 것이 키포인트네요 ㅎㅎ 원래 탄젠트 조건이 없으면 더 과감하게 썼을텐데 살짝 머뭇했네요 ㅎㅎ 최소는 직선이다 마음에 새겨야겠습니다.
쌍포타는 정의! 정의! 길이 구하면 저 세상..
30번 - 연립해서 성분벡터를 직접 구했습니다. 이런 느낌은 신기했는데 그래도 하나 얻어가니 좋네요!
그 다음 벡터 쪼개고 내적! 언제나 원을 돌아가는 점과의 최대최소는 반대방향, 아니면 반대방향!
작년도 그렇고 ois 모고는 모고 느낌에 충실해서 좋은 것 같습니다. 너무 과하지도 않고 실전적이면서 얻어갈 것도 많은...
그리고 기하러들 배려까지 ㅠㅠ다들 꼭 풀어보셔요!!
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
ㄱㄱ
-
선택적임 사랑을 줬으면 하는 사람이 있고 아닌 사람이 있음 결국엔 사랑 받아본적이 없음
-
뭐지 ㅋㅋ
-
여기서 첨 들어봄
-
거울을 더 이상 못보는 나
-
나도 목표,꿈 정하고싶음 학교는 있어도 학과는 모르겠음 솔직히 하고싶은거 없음 그냥...
-
나 어릴때 0
전재산 투자해서 이상한 주식 산 직후에 뛰어내려서 몇년뒤에 깨어났더니 주식 떡상해...
-
번호 좀 줄래? 라고 해야하는데 번호 좀 줄게 라고 말해버렸음 짝사랑까진 아니었고 그냥 생각났음
-
스무살 되기 시름 10
안 되는 방법 공유 좀
-
엔비 사고싶은데 1
난 ses ai에 다 물려있어서 못 삼 ㅠㅠ
-
열아홉인데 4
짝사랑해본 적 없음 어캄
-
주사안맞고 모든 병 치료하는방법 누가 개발해달라고 주사무섭다고요
-
롤이란 그런거지
-
고등학교 1번 대학교 1번 참고로 두번다 여자였음
-
2월 7일 딱 기다려
-
선택만풀고답안지를내보자
-
복습할 거임
-
알빠노 마인드긴 함
-
한의학효과좋은데 1
ㅇㅇ
-
역이 있다고는 안 함
-
ㅈㄱㄴ
-
미적 하셈 4
미적 좋음
-
ㅇㅇ
-
여기서 더 떨어지면 어캄? ㅋㅋㅋㅋ
-
신경쪽 이상있어서 못걷거나 죽어가는걸 한의술로 치료하는거 보면서 세상은 참 넓구나 느낌
-
설의는 다음생에 가는걸로
-
ㅇㄸ
-
ㅇㅇ
-
수학 선택과목 1
공통1틀 미적3틀입니다 미적 3문제는 확실히 몰라서 틀린거같은데 계속 미적하는게...
-
짝사랑 성공률 14
다들 어떻게 되시나요
-
돈을 벌긴 해야합니다만제 인생에서 돈이 별로 큰 가치는 아닌 것 같습니다 스스로마저...
-
미국 지진 났고 엔디비아 이 두개가 문제네
-
한 10년은 지난 애니일템데 너무 잘만듬..
-
시대에 맞춰 개정을 할 필요가 있지않나 싶음.. 기와 맥이흐르는... 어쩌구...
-
잘자라구해주세요 9
네..
-
ㅇㅇ
-
한번 걍 더치고 오르비에 기만이나 할까..
-
심심해
-
https://nz.sa/xAPkS
-
163 75 살면서 모배에서 연애 한 번이 전부였고 썸은 오르비언이랑 썸 타본 게...
-
거대거대한 흑역사의 순간이 떠오름
-
자식이 하고 싶은 걸 최대한 지지하고 따라주는 부모님들 진짜 진짜 부러움 자식이...
-
1년치 댓글 오늘 다했노 ㅋㅋ
-
알파남 특 2
오르비에 맨날 ㄱㅁ ㄱㅁ거림 기만자새끼들 ㅇㅅㅇ ㅇㅅㅇ
-
나 쌩재한다고 하셨을때도 부모님이 뭐라안하시고 암튼 꼭 올해 잘봐야할거같네요 올해도...
-
. 2
국:수:영:탐 5:2:1:2 3월 1일까지
-
다음연애는 1
제발흡연자랑 많은거안바란다난
-
앙 0
기모띠
-
기대를하는 내가 밉다
피카츄전기지지직님 안녕하세요! 후기글은 거의 올리시자마자 봤었는데, 이제야 댓글드려요!
후기 감사합니다! :) 적어주신 문항에 대한 코멘트를 짧게 드리자면,
13번은 지수 방부등식에서는 치환하면 무언가 보일 수 있다!
14번은 극한, 연속, 미분계수에 대한 정확한 이해를 묻는 문항이었습니다.
15번은 비주얼에 겁먹지 않고, 우선 접근(나열)을 해본다!
22번은 주어진 부등식이 성립되기 위한 함수의 그래프 추론하기!
27번은 사실 특수한 상황이 답이 될 때가 많죠..^^ ㅋㅋㅋ
29번은 포,타,쌍이 나왔는데, 접선 소재가 아니면 정의(+대칭성)부터 생각해보기!!! (강조)
오래전에 풀으셔서 문항 내용이 많이 희미해지셨다면, 복습을 권장해드립니다!
올해 원하는 목표 이루시길 바랄게요! 다시 한 번 후기 감사드립니다.^^
와 꼭 복습하겠습니다!!! 상세한 피드백까지 ㅠㅠ 감사드려요!!!!!