(칼럼)물리학1 등가속도 운동 문풀 고수만
게시글 주소: https://wwww.orbi.kr/00061512513
1. 등가속도 직선 운동의 핵심 첫 번째 : ‘평균 속도’
기본적으로 학생들은 등가속도 직선 운동 문제를 풀 때 세 가지 기본 공식을 배우게 된다.
1) v=v0+at
2) s=v0t+(1/2)at^2
3) 2as=v^2-v0^2
이 중 3번 공식은 변위 s와 구간 양 끝점의 속력을 직접적으로 써야 하는 상황일 때, 특히 일-에너지 단원 문제에서 주로 유용한 공식이다. 1번 공식도 특정 지점에서 속력을 구하거나 나타내야 할 때 쓴다.
그러나 궁극적으로 시간에 따른 물체의 운동 양상을 분석하려면, 2번 공식을 적절하게 잘 활용하는 것이 가장 중요하다.
2번 공식 자체를 암기하는 것도 중요하지만, 이 공식에서 ‘두 가지’ 핵심을 뽑아내서 알고 있는 것이 등가속도 직선 운동 문제를 간단하게 푸는 데 있어서 중요한 지점이다.
첫 번째 핵심은, ‘평균 속도’이다. 등가속도 직선 운동에서 평균 속도의 의미는 다음과 같다.
1) 구간 양 끝점의 속도의 중간값
2) 해당 구간에서 시간이 절반만큼 흘렀을 때의 속도
3) 해당 구간에서 평균적으로 어느 속도로, 즉 일정한 속도로 갔다면 어느 속도로 갔는지를 구한 값
4) 평균 속도=변위/시간 => s/t=v0+(1/2)at (2번 공식)
5) v-t 그래프의 사다리꼴을 직사각형으로 바꿀 때의 높이
평균 속도를 vA라고 하면, s=vAt와 같이 식을 간단하게 작성할 수 있다. 다시 말해 구간의 양 끝에 대한 정보만을 이용하는 이상 해당 구간에서 물체는 vA의 속도로 등속도 운동한 것으로 취급할 수 있게 되는 것이다. 그런데 이 vA라는 값은 등가속도 직선 운동에선 3) 외의 다른 의미를 함께 가지므로 쉽게 구할 수 있으면서도 매우 특별한 역할을 하게 된다.
평균 속도를 통해 '등가속도 직선 운동은 등속도 운동으로 바꿔서 생각할 수 있다'는 사실은 매우 결정적인 것이다. 특히 이런 접근은 가속도가 다른 여러 구간의 등가속도 직선 운동이 나올 때 유용하다. 여러 등가속도 직선 운동의 비교를 여러 등속도 운동의 비교로 바꿔서 접근하게 되면 계산 구조도 단순 비례를 따지는 정도로 간단해지게 된다.
2. 등가속도 직선 운동의 핵심 두 번째 : ‘최고점’
두 번째 핵심은, ‘최고점’이다. 통상적으로 최고점이란 중력을 받으며 물체가 운동할 때 가장 높이 올라가서 속력이 0이 되는 위치나 높이를 말한다. 연직 위로 던져 올린 물체의 등가속도 직선 운동에서는 운동 방향이 반대가 되는 지점이고, 자유 낙하 운동에서는 출발점이기도 하다.
이 최고점을 지금은 편의상 등가속도 직선 운동에서 속력이 0인 점이라고 부르자. 모든 등가속도 직선 운동은 시간 구간을 앞뒤로 연장하면 반드시 최고점이 발견된다. v-t 그래프의 관점에서는 직선을 무한히 연장해서 그려 t-절편을 찾는 것과 같다.
모든 등가속도 직선 운동이 최고점을 가진다고 보면, 모든 등가속도 직선 운동이 최고점에서 출발한다는 생각도 가능해진다. 다시 2번 공식을 살펴보자. s=v0t+(1/2)at^2에서 v0는 처음 속력(v_i)을 의미한다. 즉 v0=0이라면, s는 t^2에 비례하는 값이 된다. 따라서 모든 등가속도 직선 운동은 최고점에서부터 일정 시간 간격으로 s를 구하면 그 값은 1:4:9:...의 비율로 구해지게 된다. 여기서 다시 구간별로 s를 따로 구하면 그 값은 1:3:5:...의 비율로 구해지게 된다. 이 비율에 익숙해지면 실제로 이 비율로 값을 설정한 문제를 매우 빠르게 해결할 수가 있다.
최고점이 중요한 또다른 이유는 대칭성에 있다. 등가속도 직선 운동은 최고점을 기준으로 완벽히 대칭인 운동을 하는데, 다르게 표현하면 물체가 최고점까지 올라갈 때의 등가속도 직선 운동과 최고점에서부터 내려갈 때의 등가속도 직선 운동은 방향만 반대인 동일한 운동이다. 거꾸로 돌린 운동으로 부를 수 있다.
3. ‘가속도 무시’ 풀이
물2의 포물선 운동을 공부한 경험이 있는 학생이라면 ‘중력 무시’ 혹은 ‘중력 끄기’라고 불리는 풀이법에 대해 익숙할 것이다. 중력이 없었다면 물체가 등속도 운동해서 어느 지점으로 이동했을지를 표시하고, 그 지점에서 중력에 의해 낙하한 거리를 표시해서 운동을 분석하는 방법이다. 이런 풀이가 물2에서만 가능한 것은 아니다.
물1을 공부한 학생의 기준에 맞추어 설명하면, ‘가속도 무시’ 풀이란 2번 공식 s=v0t+(1/2)at^2에서 v0t와 (1/2)at^2을 분리해서 운동을 분석하는 방법이다. 구체적으로는 v0의 속도로 등속도 운동했을 때의 변위 벡터를 따로 구하고, a의 가속도로 인해 추가되는 변위 벡터를 따로 구해서 합하는 방식이다. 물1에서 다뤄지는 등가속도 운동은 직선 운동으로 국한되므로 여기서 말하는 변위 벡터란 결국 (+)와 (-) 두 가지 부호만으로 나타낼 수 있다. v-t 그래프의 관점에서는 사다리꼴을 직사각형과 직각삼각형으로 쪼개어 계산하는 것과 같다. 이런 접근은 v0t와 (1/2)at^2 각각의 계산이 앞서 기술한 바와 같이 부담이 적기 때문에 문제 풀이를 더 용이하게 만드는 데 일조할 수 있다.
4. 평균의 평균, 내분점
물1에서는 종종 물체가 등속도 운동, 등가속도 운동하는 구간이 여러 개로 나뉘어져 있는 상황이 출제된다. 이런 물체의 운동을 다룰 때, 각 구간별 평균 속도가 아닌, 전체 시간 구간에서의 평균 속도를 구하고 싶을 때 내분을 활용할 수 있다. 예컨대 연속한 두 개의 등속도 운동 구간 A, B가 있고, A, B에서 물체의 속력이 각각 vA, vB이고, 운동 시간이 각각 tA, tB라고 하자. 이때 A, B 전체 구간에서 평균 속도는 (변위)/(전체 시간)=(vAtA+vBtB)/(tA+tB)이다. 즉 평균 속도는 vB, vA 사이의 tA:tB 내분점이다.
앞서 등가속도 직선 운동은 등속도 운동으로 바꿔서 생각할 수 있다고 하였다. 즉 등속도 운동 구간 2개에 대해 적용한 방법은 곧 등속도 운동 구간과 등가속도 운동 구간의 조합, 혹은 두 개의 등가속도 운동 구간의 조합에 대해서도 똑같이 적용할 수 있다.
5. 예제
[해설]
A, B는 같은 속력으로 등속도 운동하다가 같은 속력으로 빗면에 진입한다. 즉 B는 A의 일정 시간 후의 모습이다. 그 시간을 t라 하면, 3vt=L이다. A는 p를 2v의 속력으로 지나고, t가 지나면 B처럼 q를 v의 속력으로 지날 것이다. 즉 pq 구간에서 평균 속력은 3/2v이다. 즉 pq 구간의 길이는 (3/2)vt=L/2이다.
[해설]
B의 처음-나중 속력이 v, v/2이다. A, B가 받는 힘은 같은데 질량이 A가 2배이므로 가속도는 B가 2배이다. 즉 B의 속도가 -v/2만큼 변했으면 같은 시간 동안 A의 속도는 -v/4만큼 변한다. 따라서 A, B의 처음-나중 속력은 v, (3/4)v이다. 결국 A, B의 평균 속력은 (7/8)v, (3/4)v이고, A, B가 이동한 거리가 각각 2d, d+x이므로 비례식을 세워 정리하면 x=(5/7)d이다.
[해설]
질량이 1kg, 중력 가속도가 10m/s^2이므로 물체는 1m 낙하할 때마다 퍼텐셜 에너지가 10J씩 감소한다.
a에서 가만히 놓인 물체의 c에서의 속력이 b에서의 2배이므로 a에서 b까지 걸린 시간을 t라 하면 a에서 c까지 걸린 시간은 2t이다. 즉 시간이 2배이고 최고점 출발이므로 각 구간의 길이 비는 1:3이다. 따라서 a, b 사이의 거리는 1m이고, c, d 사이의 거리는 2m이다. ㄱ 거짓, ㄴ 거짓
역학적 에너지 보존으로 6m 낙하한 d에서 운동 에너지는 60J이고, 질량이 1kg이므로 속력은 sqrt(120)m/s이다. ㄷ 참
[해설]
A, B가 v, 2v의 속력으로 등속도 운동했다면 거리비가 1:2가 되는 지점에서 만났을 것이다. 그러나 가속도에 의해 만나는 지점이 왼쪽으로 L/3만큼 당겨진 것이다. 가속도에 의한 성분 (1/2)at^2이 L/3인데, 마침 PQ 거리가 L로 3:1의 비를 만족한다. A와 동일한 운동을 하는 물체가 최고점에서 출발했다고 하면, t가 지나면 L/3 낙하하고, 또 t가 지나면 L 낙하한다. 즉 A는 t가 지나면 최고점에 도달해 속력이 0이 된다. P에서 Q까지 t동안 이동하고, 최고점까지 t동안 이동하므로 Q에서 A의 속력은 v/2이다. 2aL=v^2-(v/2)^2에서 a=3v^2/8L이다.
[해설]
A, B가 v0의 속력으로 등속도 운동했다면 같은 지점에 도달했을 것이다. 그런데 A, B의 가속도가 방향이 반대이고 크기가 a로 같으므로 가속도에 의한 성분도 +(1/2)at^2, -(1/2)at^2으로 크기가 같고 방향이 반대이다. 따라서 등속도 운동해서 도달하는 지점은 Q와 R의 중간인 4L 지점이다. 앞의 문제와 마찬가지로 PQ 거리가 3L로 A의 가속도에 의한 변위 성분과 3:1의 비를 만족한다. A와 동일한 운동을 하는 물체가 최고점에서 출발했다고 하면, t가 지나면 L 낙하하고, 또 t가 지나면 3L 낙하한다. 즉 A는 t가 지나면 최고점에 도달해 속력이 0이 된다. P에서 Q까지 t동안 이동하고, 최고점까지 t동안 이동하므로 Q에서 A의 속력은 v0/2이다. 2a3L=v0^2-(v0/2)^2에서 a=v0^2/8L이다.
[해설]
0초~5초 구간과 5초~10초 구간 두 개의 등가속도 운동이 있다. 전체를 놓고 보면 10초 동안 100m를 간 것이므로 전체 평균 속도는 10m/s가 되어야 한다. 각 구간에서 소요된 시간이 1:1로 같으므로 각 구간의 평균 속도의 평균이 곧 10m/s이다. 만족하는 속력은 15m/s로, 각 구간의 평균 속력이 7.5m/s, 12.5m/s로 맞춰진다.
[해설]
B가 Q를 지날 때 속력을 V라 하면, P에서 B가 정지 상태에서 출발하므로 PQ 구간에서 평균 속력은 V/2이고, QR 구간에서는 등속도 운동이므로 속력은 V로 일정하다. 즉 P에서 R까지 V/2로 2t만큼 갔다면 V로 t만큼 간 것이다. 따라서 B의 전체 평균 속력은 V/2와 V의 1:2 내분점인 (2/3)V이다. 그런데 등속도 운동하는 A가 B와 R를 동시에 지나므로 (2/3)V=v이다. 따라서 PQ 구간에서 평균 속력은 3/4v이다. ㄴ 참
등속도 운동하는 A가 Q를 지날 때는 절반인 3/2t만큼이 지났을 때이므로 B는 아직 PQ 구간에 있다. Q에서 B의 속력이 3/2v이므로 3/2t 때 B의 속력은 (3/2)v*(3/4)=(9/8)v로 v보다 크다. ㄱ 참
A, B가 R, S를 동시에 지나므로 B의 RS 구간에서 평균 속력이 v와 같다. 즉 S에서 B의 속력은 0이 아니다. 이동 거리가 같고, 큰 쪽 속력이 같다면 나중 속력이 0이 아닌 쪽의 가속도가 더 작다. ㄷ 거짓
[해설]
t=0에서 t=T까지 알짜힘은 2mg이므로 가속도는 2g이다. 즉 t=T일 때 속력은 2gT이다. 이후 가속도가 -g이므로 t=3T일 때 최고점에 도달한다. t=0에서 t=T까지 평균 속력이 gT, t=T에서 t=3T까지 평균 속력도 gT이므로 두 구간 전체를 놓고 보면 평균 gT의 속력으로 3T만큼 이동한 것이다.
t=3T에서 t=4T까지 가속도는 -g이므로 t=4T일 때 속력은 gT이다. 이후 지면에 속력 0으로 도달한다. t=3T에서 t=4T까지 평균 속력이 gT/2, t=4T에서 지면까지 평균 속력이 gT/2이므로 두 구간 전체를 놓고 보면 평균 gT/2의 속력으로 이동한 것인데, 올라간 만큼의 거리가 곧 낙하한 거리이므로 시간은 2배가 걸린 것이다. 즉 기구는 t=9T일 때 지면에 도달하므로, t=4T에서 t=9T까지 가속도는 1/5g이다. 즉 알짜힘이 (1/5)mg이므로 F=(6/5)mg이다.
0 XDK (+100)
-
100
-
이 다음에 뭐 푸시나요?
-
소설도 막 미친듯이 못알아먹게 모르는 단어 남발 아니면 어느정도 읽히는데 고전시가나...
-
조퇴하고 병결해야하나
-
1. 올해 서울대 가려는 친구들은 가산점 때문에 2과목 2개하나요? 작년엔 2랑...
-
콘서타27 매일 복용하고 평가원 모고때는 긴장을 심하게 해서 위부팽만감 + 심장이...
-
ㄱㄱ
-
내가 예민한건가 찬바람 ㅈㄴ들어오고 차소리시끄러윤데 들어오면 맨날 창문여네 말해도...
-
입실하러 가기 전에 집에서 싸고 가고 싶은데 집에서 한번 싸도 국어나 수학 볼때 꼭...
-
뭐든 상관 없으니 그냥 공감해줘.
-
지금 ㄹㅈㄷ로 조용하네 내일부터 8 40에 쳐야겠다
-
오밐추 2
오부이들 오늘도 화이팅
-
[속보] CNN 초기 출구조사, 후보 긍정적 평가 해리스 46% vs 트럼프 42% 3
후속기사가 이어집니다
-
제발요 너무졸림
-
국어 : 구주 연마의 서 복습 + 최근 3개년 수능 + 언매 기출 + 혜윰 모의고사...
-
성적차이 말 안 됨
-
내일부터 기출로 회귀해야지
-
부사관 학벌 2
대부분 고졸 혹은 지방 4년제 맞음??
-
오늘의 모닝실모 1
한수 8회 강대X 10회 목표 점수대 90이상 100이상
-
강의실 책상에 그대로 있네 진짜 존나 다행이다
-
옯모닝 0
음 9시이전이면 얼버기지.. 음음
-
수 상 수 하 개념을 아예 모르는 건 아니지만 내신공부를 하나도 안했다보니 문제를...
-
다들 화이팅!
-
와 1
수능 냄새 난다
-
동네 작은 학원에서 재수반 관리 및 수학을 가르치는 강사입니다 오늘 모의고사 치르는...
-
가방회수완료 0
이제 옷이랑 자켓이랑 이어폰만 찾으면 된다
-
그냥 대부분 직관적인감에 의존하는거죠?
-
ㅎㅇ 2
-
얼어죽겄네
-
clothing20snu 대성 커피 먹구 가 ~~ ⸝⸝ɞ̴̶̷ ·̮ ɞ̴̶̷⸝⸝ 0
있잖아, 지금 2026 19패스 구매하고, 내 ID를 입력하면 너도, 나도 각각...
-
중대 3
검은색 한자 과잠 사랑합니다
-
사연보고 추첨 90씩 두과목이면 현강비 한두푼 아닐텐데 쿨하게 포기하네
-
굿모닝 10
-
처음도 아니고 수능 일주일 남기고 이러니까 화가 ㅈㄴ 남 그냥
-
모교 갓다가 학교 알려주면 그 학교로 가는 곤가? 어케대는거예요?
-
4 1
군수생 달린다 재활하기 가장 만만한 생윤부터 공부하는 걸로...
-
그놈이 왔구나
-
이거 진짜 루틴된 것 같은데 족비상이에요,,,
-
사설벅벅벅벅하다가 평가원 푸니까 모래주머니 풀은 느낌 1
엿같은 계산도 배배 꼬아놓은 표현도 나를 막을 수 업다. 이몸, 최강.
-
나중에 볼려고 했는데 제목이 갑자기 생각이 안나요
-
삼수해야지 5
진심으로 저렇게 생각하는게 긴장을 줄일 최대한의 방법인 것 같다
-
내 다리털 땜에 내가 간지러움;;
-
나 7시 45분에 기상함 이게 최대야 어무이가 밥 억지로 먹여서 이제 나갈준비하는중
-
비약이 있으니까 약사 할까
-
물2 개념 강의 누가 ㄱㅊ았나요? 보통 얼마나 걸리나요?? 물2는 지금 친구가 대성...
-
수능이라고 세상에서 없애버리고 싶은데 보면볼수록 자꾸 또 보고 싶고 안보면 자꾸...
-
공못광광울 8
제발 수능까지 처참하진 않았으면 좋겠는데
-
승무원학원 그런거 안다녀도 성적 개높으면 붙여줌?
떴다
시골에서 할 거도 없는데 이거 10회독한다 ㅋㅋ
떴다 내 야동
제목이 문제 질문글같아..
헉 근가요
그래서 대충 넘기는 사람들이 훨씬 많은듯
이런
생지러지만 7ㅐ추
념글 드가자
그저 물리의 신.
개추받으십쇼
일단 스크랩
최고점풀이는 많이 썼었는데 가속도 무시풀이는 처음 보네요 신기하다
물갤에서 본내용 같았는데 같은분이셨네 ㄷㄷ