칼럼6) 탄젠트 이모저모
게시글 주소: https://wwww.orbi.kr/00062085590
탄젠트 함수의 성질 두 가지를 소개해드릴까 합니다. 오늘 내용은 가볍고, 나름 알려진 편입니다.
일단 문제입니다.
(당연히 자작! 제가 드리는 문제에서 기출이라고 따로 언급이 없으면 다 자작일거에요)
원래는 f(x) 정의역을 좀 달아줘야 하는데(x=pi/2, 3pi/2 ...에서 정의 안 됨 이런거요) 예제문제니까 패스했습니다. 가볍게 보이는게 아무래도 더 중요하죠(?)
아무튼 문제를 풀어보겠습니다. 우선 이 상황이 왜 결정되는지를 느껴야 해요.
이 문제뿐만 아니라 다른 수학 문제를 풀 때에도 마찬가지에요. 어떤 요인으로 인해 상황이 결정되었고, 자신은 계산만 하면 답이 원하는 값을 찾을 수 있다는 걸 늘 느껴야 합니다.
그림을 그려보겠습니다.
점 A의 위치가 정해지면 점 B의 위치는 자동결정입니다. A 위치에서 5pi/2만큼 오른쪽으로 간 곳에서 함수에 점 찍어주면 그게 B에요.
한편 탄젠트 함수는 pi만큼의 주기를 가진 함수입니다. 그래서 아래 그림처럼 5pi/2 차이를 pi/2 + 2pi로 인식해볼 수 있어요.
pi/2만큼을 먼저 이동해주면 A가 위치한 것과 같은 날개(?)에서 B'이 찍힙니다. 그리고 그거와 위상이 같게끔 2pi만큼 이동해주면 세 번쨰 날개(??)에 B가 찍혀요.
위상이라던가 날개라는게 수학적 용어는 아닌데요, 직관적으로 전달하기에 이만한게 없더라구요. 앞으로도 종종 이렇게 표현하겠습니다.
여기서 B'과 A의 관계에 주목할 필요가 있습니다. 탄젠트 함수에서 x좌표 차이가 pi/2라는 것은 특별하기 때문이죠. 이유는 다음과 같습니다.
각이 pi/2 즉 90도 차이 난다면 두 직선의 기울기는 곱했을 때 -1이 나오는 관계일 것입니다. 함수에서 이를 보자면
점 B' 그리고 점 B의 y좌표가 k파이라고 하면 점 A의 y좌표는 -파이/k가 됩니다. 이 함수는 pi tanx기 때문에 그냥 k,-1/k가 아니라 거기에 파이까지 곱해진 겁니다.
그런데 아직 상황은 결정되지 않았어요. 영상을 보듯이 다음 과정이 연속적으로 보였으면 좋겠습니다. a가 -pi/4와 0 사이를 오갈 때 점 A 위치가 각각 결정되고, 그에 따라 B의 위치도 결정되는... 그 모든 상황이 아직 가능해요. 아직 a가 결정되지 않았으니 당연히 상황은 결정되지 않았습니다.
그래서 조건이 하나 더 주어져 있습니다. 점 A와 점 B를 이은 직선의 기울기가 1입니다. x좌표 차이가 5pi/2일 때
y좌표 차이도 5pi/2여야 합니다.
답은 2가 되겠네요. A의 x좌표가 -pi/4에서 0 사이에 있기 때문이죠.
한편 첫 번째 줄에서 두 번째 줄로 넘어갈 때, 정석은 양변에 k를 곱한 뒤 이차방정식을 푸는 것입니다. 근데 그렇게 하지 않고 바로 2 혹은 1/2이라고 찾을 수 있었으면 좋겠습니다.
일단 이차방정식 꼴이 될 것이니 k 값이 오직 2개라는 걸, 또 두 근이 역수관계에 있을 수밖에 없다는 걸 안 상태에서 (1, -1, 0이 아닌 어떤 수 a가 위 식을 만족한다면 1/a도 만족할 테니까요.) k=2를 넣으면 만족하니까 1/2도 만족하겠네생각하고 찾아내시는 겁니다.
숫자도 맨날 나오는 거만 나와서 그렇게 부담되지도 않습니다. 이미 이렇게 많이들 하고 계시기도 할거구요.
한 발짝 더 나아가서
이런거도 이제 바로 다음이 보이면 좋죠. 물론 중요한 내용은 아니고 그렇게 많이 나오는 계산도 아닙니다. 소소한 팁 드린거에요!
다시 본론으로 돌아가겠습니다. 삼각함수 문제는 주기와 대칭이 전부 아니냐고 말하신다면 .. 맞는 말이긴 합니다. 그런데 가끔 tan 문제에서 주기와 대칭 이외의 성질 두 가지를 묻기도 하더라구요. 지금까지는 그 성질 두 개 중 첫 번째를 소개드린겁니다.
tan 함수에서 x좌표 pi/2차이 -> 함숫값 정보 도출 가능
평가원에 나올 확률이 높냐고 묻는다면.. 전 낮다고 봅니다. 하지만 이 내용 자체로 좀 생각할 거리가 있고, 1년 내내 n제와 사설에서는 종종 보실 거기 때문에 소개드려봤습니다. 두 번째 성질도 마찬가지에요!
그 두번째 성질도 우선 문제로 소개해드리겠습니다.
(내리면 답 스포)
답은 4입니다. 풀이는 따로 없는데 방금 못 푸셨더라도 아래 내용 읽어보시면 스스로 푸실 수 있을거에요.
탄젠트 곱이 -1일 때 두 각 사이의 관계도 존재하지만, 탄젠트 곱이 1일 때에도 관계가 존재합니다.
곱이 1이라는 건 두 기울기가 역수관계에 있다는 것인데요,
역수 관계에 있다면 둘은 y=x에 대해 대칭적으로 그려집니다.
기울기 n, 그리고 1/n인 함수를 볼게요.
기울기가 n이라는 건 x좌표가 1 증가할 때 y좌표가 n 증가하는 것이고
기울기가 1/n이라는 건 y좌표가 1 증가할 때 x좌표가 n 증가하는 것이기에
둘이 y=x에 대해 완전히 대칭적인거죠.
즉, 두 각의 평균이 pi/4라는 겁니다.
(둘 다 동경을 예각으로 표현했다고 했을 때요.)
탄젠트 함수에 이를 나타내어보면
x축에 제가 pi/4, 그리고 등간격 표시를 해놨습니다. 어떤 의미인지 이해가 가실거라 생각합니다.
알려드린 두 성질을 tan 함수에 다 표시해보겠습니다.
tan 함수와 y=1/n 그리고 y=-1/n의 교점은 원점에 대하여 대칭일테니까 x좌표가 완전히 뒤집힌 것도 보입니다.
이 두 가지 성질 외에는 전부 주기와 대칭으로 끝날 겁니다. 평가원은 아마 주기 대칭으로 끝나게끔 문제를 낼 거 같지만 그럼에도 알려드린 이유는... 위에 말씀드린대로입니다 ㅎㅎ
준비한 내용은 여기까지입니다. 혹시 원하시는 주제 있다면 댓글로 언제든지 자유롭게 요청해주세요!
좋아요 부탁드리고, 팔로우해두시면 앞으로 나올 좋은 칼럼들을 놓치지 않고 확인하실 수 있습니다.
0 XDK (+1,000)
-
1,000
-
겨울방학때 피램 1회독하고 2월중순쯤부터 강기분하는거 어떰 이 커리 어떻게 생각하심???
-
뭐지 6
내학교가특정됐다 ㅈ된듯
-
현역이고 인강으로 배기범 커리 타려는데
-
과탐 => 메디컬 가려는 친구들 인설공 => 사탐런 과탐 가산점 주는게 크려나
-
여기 검색해보니까 최초합되고 좋아하다가 6개월만에 힘들다고 반수이야기하시는분도...
-
여러분은 3
코난 최애 편이 무엇인가요? 전 월광 소나타라고 생각해요
-
낙지칸수 0
의대로 5칸추합/5칸추합/7칸최초합이면 쓸만 한가? 메디컬은 끝까지 기다려야 알 수 있으려나
-
주변에서 재능충이라 그러긴 하는데 잘 모르겠는 07임다 고1 3모 98이었다가 점점...
-
개가 오줌 싸다가 쫄음 ㅁㅌㅊ?
-
작년에는 최초합권이여서 지원했는데 예비도 안나와서 당황스럽네요. ㅜㅜ 보니까...
-
울룰루
-
교재가 없네요 아쉽
-
에리카랑 지거국 공대랑 고민입니다… 서울 거주중이고 에리카는 버스타고 편도 1시간...
-
교수님 악랄하심 4
대학 시험을 고등학교 학군지 내신처럼 내심 다음중 옳은것의 개수를 고르시오 ㄱ~ㅂ...
-
수학 백분위 99~100이면 한번 도전해볼만 할까요?
-
작년에 고경영/고경제가 크게 폭이 나서요... 작년 677/675가 올해 백분위로...
-
옯비언들이 4시에 온다면 난 3시부터 설레일거야
-
2시 약속인데
-
5수고민 2
서성한 상경계열 재학중입니다.. 예전부터 스카이 상경계열이 목표라 5수로 스카이...
-
소름돋아
-
N수의 최대 단점 11
자동 히키코모리 되어 벌임 인긴 관계 다 끊어짐
-
이거 군대가서 어케버팀 ㅅㅂ 아니 작년까지만 해도 평발 4급 기준이 그 거골이랑...
-
감사합니다
-
이거 찍기특강인가요 현강에서만 공개하는거라 암묵적 비밀인가요
-
못 죽는 기사와 비단 요람 이거 벅차오름 ㄹㅇ
-
화작 독학 교재 추천 해주세요
-
이쁜 여자있나요,
-
레전드 공하싫 2
......
-
제곧내 일단 진학사 기준 부대 7칸 충대 8칸 뜨는데 (뭐, 언제까지 유지할란지는...
-
하.
-
우산 없는데 아
-
울산 의대 추합 4
울산 의대 (잠재역량) 합격 후 더 상위 대학(서연카성고)으로 가는 사람은 없나요.
-
확통 표점 4
상위 경영학과 (고대 성대 등등) 목표로 공부중인 예비고3입니다 언매 확통 생윤...
-
연습..해야겠지?
-
3수 준비중입니다. 지구과학1 + 생명과학2를 생각중인데, 지구 해보신 분들의...
-
기숙학원 1
양지메가 러셀여학생전문관 둘 중 어디 추천하시나요?
-
진짜 다들 데이트 하러 간거면
-
ㄹㅇ이.
-
이거 텔레그램 에어드랍 같은것 같은데 미션 버튼 딸깍 하고 1월 1일까지 매일...
-
쪽지 주시면 리스트 보내드려요! 국어 수학 영어 생1 지1 있습니다...! 강남대성...
-
ㅇㅂㄱ 5
-
연세대만 붙어도 감지덕지라고 생각했는데 막상 붙으니까 서울대에 원서도 안 넣은 거에...
-
집공재수ㅈ망썰 1
안녕하세요. 집공재수하다가 쫄딱 망한 05 재수생입니다. 혀녀기때는 석열행동 당하기...
-
수학 시간 1
수능 풀어보려는데 미적분만 몇분 재고 풀어야할까요?
-
ㅠㅠㅠㅜ
-
ㄹㅇ 군대밥이 엄마밥보다 맛있음
-
외대 예비3번이면 가능성없나요??????? 제발요 간절함
-
남자 미필 삼수 2
22살로 인아곽라인 전화기 갈 거 같은데 나중에 취업할 때 나이로 마이너스 많이...
pi/2 차이이면 곱이 -1이다... 처음 알았네요!
좋은 정보 감사합니다!
수직인 두 직선의 기울기의 합이 -1이다를 처음 알지는 않았을텐데요..
정확히는 (n+1/2)pi를 쓰려고 했어요. tan값과 그 그래프와 연결지으려는 생각은 깊게 하지 못했었다는 뜻이에요. 수직인 두 직선의 기울기의 곱이 -1인건 물론 기본적으로 알아야 하는 사실이고요.
와우 님 뭐꼬