칼럼7) 등차수열 합은 이차함수다
게시글 주소: https://wwww.orbi.kr/00062226391
우선 기출 문제를 하나 보겠습니다.
(더 내리면 스포)
답은 4번입니다.
제가 전에 썼던 칼럼에서 등차수열 관련 학습할 내용을 다음과 같이 분류해놓은 적이 있는데요, 이 글은 세 번째
3. Sn 자체의 성질에 대한 칼럼입니다.
등차수열의 합은 결국 이차함수이기 때문에, 이차함수의 여러가지 성질을 이용해서 풀이를 해갈 수 있습니다.
<풀이>
지금 제가 알려드리는 방법은 일반적으로 알려진 풀이와 큰 흐름은 같으나, 디테일에서 차이가 납니다. 더 빠르게 답을 내실 수 있을거에요.
우선 Sn을 그려봐야겠죠.
공차가 음수이기 때문에 위로 볼록한 함수를 그리면 되고, 또 (0,0)을 지나게끔 그려주었습니다. Sn의 필수조건이죠. 그리고 b는 14 이상의 자연수여야 한다는 것도 보이네요.
그 뒤 문제에 주어진 이 조건을 해석해야겠죠. n이 자연수일 때 늘 Sn 함숫값의 절댓값이 14보다 크려면 어떻게 되어야 할까요.
이차함수가 0을 지나는, 표시한 저 부분을 관찰해야겠다는 생각이 자연스레 들어야 합니다. 0을 지나는 곳과 왼쪽, 오른쪽으로 가장 가까이 있는 각 점이 함숫값의 크기가 14 이상이어야 합니다. 이 조건만 만족하면 이차함수 특성상 그 외에는 문제될 부분이 없습니다. 계속 절댓값이 증가할테니까요.
오른쪽 근을 정확히 구해야 할 필요성이 느껴집니다. Sn 식을 직접 써서 근을 b로 표현할 수도 있지만, 그건 좀 재미 없으니 다른 방식으로 가볼게요.
우선 an 식을 써보겠습니다.
이 등차수열은 일 때 0을 지납니다. 그럼 이차함수 Sn은 에서 최댓값을 가집니다.
(이유 모르겠으면 옆에 링크 게시물 확인! 위에 링크랑 같은 링크입니다. https://orbi.kr/00061847052 )
한편 Sn은 n=0일 때 근을 가지므로, 대칭성에 의해 나머지 한 근은
입니다. 이걸 보며 한 가지 정보를 더 끌어내야 합니다. 바로 b가 홀수라는 점입니다.
b가 짝수라면 나머지 한 근은 자연수가 될텐데요, 그런 일이 일어나서는 안 되겠죠. 함숫값 크기가 14이상이어야 한다는 조건을 만족하지 못할테니까요.
b가 홀수라는 걸 통해 또 다른 정보를 얻을 수 있습니다.
근과 양쪽으로 가장 가까운 점을 다음과 같이 표현할 수 있습니다. 한편 표시한 빨간 부분 길이는 1/2로 같습니다.
표시한 부분 길이가 같다는 정보를 통해 또 또 다른 정보를 얻을 수 있습니다.
바로 점 A와 점 B의 함숫값을 둘 다 조사해야 할 필요가 없다는 점입니다. 이차함수 특성상 축을 지난 이후로 점점 함숫값 변화폭이 커지는데요, 점 A부터 이차함수의 근까지의 변화량이 14보다 크다면, 이차함수의 근부터 점 B까지의 변화량은 당연히 14보다 클 것입니다. 후자가 항상 더 큰 값을 가져야 하기 때문이죠.
참고로 교육청에서 공개한 답지는 A, B 함숫값을 모두 조사했습니다. (자기들은 그렇게 안 풀어놓고 답지만 그렇게 써뒀을 확률이 큽니다. 답지를 작성할 때에는 작성자가 답지 쓰기 편한 방식으로 쓰는게 아니라, 공부하는 학생들을 위해 제대로 답지를 써야한다고 생각하는데... 교육청 답지를 보며 아쉬움을 느낄 떄가 많습니다. 이 문제도 그 중 하나네요.)
아까 an식을 써뒀으니 무민공식을 이용하여 Sn 식을 바로 써봅시다.
(무민공식 모른다면 옆에 링크 확인 https://orbi.kr/00061847052 )
점 A의 x좌표를 대입합니다. 그 결과가 14 이상이라고 부등식을 세워준 뒤에 풀면
이 나옵니다.
답은 4번입니다.
Sn 을 "이차함수답게" 해석해야 한다는게 구체적으로 어떤 느낌인지를 잘 보여준 문제라 생각합니다.
수열은 자유도가 상당히 높은 파트인데요, an 을 관찰하며 답을 낼 때도 있고, Sn을 관찰하며 답을 낼 때도 있고, 둘이 같이 보며 전개해가야 할 때도 있죠. 세 방식이 모두 어색하지 않아야 처음 보는 문항을 만났을 때 제대로 접근할 수 있을겁니다.
또 다른 기출문제를 볼게요.
얘도 조건에 따라 Sn을 완성하다보면 Sm=-162, S_2m= 162로 확정짓고 계산하면 끝이란 걸 알 수 있어요. an으로 돌아가지 않고 Sn의 이차함수적 성질에 따라 끝낼 수 있는겁니다.
도움이 되셨다면 좋아요 부탁드리고, 팔로우 해두시면 앞으로 올라오는 칼럼들과 자작문제를 놓치지 않고 확인하실 수 있습니다.
감사합니다!
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
개인적으로 각 대학별 취업 고시 아웃풋 싹다공개하면 0
입결좀 많이 뒤바뀔수 있을거 같음
-
곧 생일인데 1
생일을 줬으면 하는 사람이 몇 명있음 받으면 아주 행복한 마무리가될거같은
-
수능 물1 물2 화1 화2 개념 배우고 문풀하는 거 중에서 화학은 전혀 관련없는거...
-
할 시간 없고 실력 퇴물되니까 보기만 하게되네
-
확증편향 4
-
동사 세지 한지 1
표본 고인 정도가 어떻게 되나요? 동사>한지>=세지? 7칸 쌍지 연고 계약학과 5칸...
-
너네 때문이야 너네 때문이야 ㅆㅁㅁㅁㅁㅁㅁㅁ
-
예뻐요 0
팬이에요
-
거의 100% 자연인 차은우가 아까운거겠지? 차은우가 아직까지 열애설 없는건 좀 아쉽긴 해
-
걍 얼굴이 내 스타일인 사람 보면 한번 알아가보고 싶다 라는 생각 드는거지...
-
같이 밤새요~
-
부산대 역교과 2
예비 16인데 가능할까요...??
-
지듣노 0
간만에 한국곡 이어지는거 크
-
겨우 다운받았네...
-
일단 진학사 사긴 샀는데 지거국은 (심지어 하위임) 진학사 안사는 경우도 많다고...
-
오르비 지박령 됐네 아ㅋㅋ 아저씨 나잇값 좀
-
커피 5만원이 찐 공포여..
-
반영비 맞기가 힘들긴 해.. 국잘문과인데 sky 성적이여야 올해 레전드 빵이...
-
25 수능 생지 백분위 91 92 이었고 한의대 목표로 재수하려합니다 사탐런 정배 과목있을까요…
-
다 발라줄 수 있음
-
진짜들은 번따하는것조차못한다고...
-
저녁운동완뇨 1
만족스럽군 조만간외모백분위4를 탈출할수잇지않을까요?
-
번따 한번도 안해봄 실업팀 들어가기전에 알바했을때 번호교환이 끝임
-
대체 기존 의대생들 왜이리 25학번에게 국시 못볼거라고 협박하고 다니는거죠?...
-
무협 재밌음? 0
ㅈㄴ 재밌으니까 재밌는 작품 좀 추천 좀
-
안녕하세요 3
주말이 다 저물었네요 다들 알차게 주말 보내셨는지용
-
바짓가랑이붙잡으려고 했던 내가 뭐였을까
-
님들이라면 어디가실껀가요???
-
나도 모르지ㅇㅇ..
-
궁금한게 있는데 현장에서 응시 못하면 어쩔수없이.. 유빈…이 올라오면 뽑아서...
-
급 슬퍼지네요
-
저 한 사람한테 3번했다 손절당함..
-
그저 침묵을 유지하고 있는 나 나는 아무것도 말할 수가 없어요
-
나보다 내신도 낮고 하강곡선 그린 앤데 나 떨어진거 알려줬더니 30분뒤에 전화와서...
-
번따나 인따 시도해보시는 걸 추천함.. 제가 1년 전에 지금까지 본 사람 중 제일...
-
성별바뀌면 레즈는 할 수 있을거 같음
-
밷호쌤은 개념이 좋은데 유전이 아쉽다는 평이 많고 한종철쌤은 유전은 괜찮은데 개념이...
-
이 모든 상황이 좆같아서 눈물만 나옴
-
안녕하세요! 저는 이번에 인문논술전형으로 이화여자대학교에 최초합하게 되었습니다....
-
텔그랑 진학사 다 사서 고속까지 구매하기 부담스러운데 제 성적 한번만 돌려주실...
-
도대체 뭘 봤다고 무턱대고 번호 따냐 ㄹㅇ 그냥 육체적인 관계를 하고 싶어서자너
-
나는 번따를 할 생각을 못해봤는데 에초에 결과가 정해져 있어서 굳이 싶음
-
후한건가요? 짠건가요 ????
-
살짝 감동이네 한 기수 후배가 자기 말출이라고 기타치면서 노래해줌.. 내 감성ㅠ
-
초콜릿으로 해야징
-
빅5 간호대도 떡상할듯
-
윤도영 정시상담 보는데 내가 생각하는 조합이랑 거의 똑같아서 놀람 헉
-
헬조선 ㄹㅈㄷ 1
ㅋㅋㅋ
1빠임니다
1빠 ㄱㅁ
등차수열의 합을 이차함수의 그래프로 해석할 때, 연속적으로 그래프를 그리면 정의역을 실수 전체로 한정하는 실수가 가끔 있긴 해요, 그걸 헷갈리면 저 문제에서도 멘붕이 왔겠네요..
무밍추