[이동훈t] 3월 수학, 이동훈 기출 비교
게시글 주소: https://wwww.orbi.kr/00062546333
2024 이동훈 기출
안녕하세요.
이동훈 기출문제집의
이동훈 입니다.
오늘은 3월 수학 전 문항과
(단, 너무 쉬운 문제 제외)
2024 이동훈 기출을
비교해 보겠습니다.
기출이 어떻게 변형되어 출제되는지
꼭 익혀야 하는 수능 실전 개념은 무엇인지
반복되는 중요한 풀이에는 어떤 것들이 있는지
...
등등을 알아보겠습니다.
N수생 분들에게도 당연히 도움이 되겠지만
아직까지 기출에 대한 경험이 충분하지 않은
고3 분들에게 큰 도움이 되리라 생각합니다.
힐 위 고 ~!
<공통 (수학1+수학2) >
문제를 보자마자
이차함수의 정적분의 공식,
이차함수의 대칭성,
넓이의 분할과 합
이렇게 3가지가 떠오르지 않았다면
기출에 대한 연습이 부족한 것입니다.
아래는
2024 이동훈 기출 수학2에 수록된
이차함수의 정적분 공식에 대한
증명입니다.
이 문제를 보자마자
아래의 그림이 떠오르지 않는다면 ...
연습 부족입니다.
아래는 2024 이동훈 기출 수학2에
수록된 수능 실전 개념입니다.
19년에 출제된
교육청 기출의 순한맛 입니다.
이 문제에 대한 설명은 아래의 글로 대신합니다.
[이동훈t] A-B=(A+C)-(B+C) (+230311) 수학1
딱 보자마자 작년 9월 모평 문제가 떠올라야 합니다.
풀이법도 동일합니다.
합성함수의 방정식
이차함수의 대칭성
삼각함수의 실근의 합
이렇게 세 가지가 결합된 전형적인 문제입니다.
이 수준의 문제는
쎈 B 에서 충분히 찾을 수 있고요.
2024 이동훈 기출에서는
합성함수의 방정식에 대한 설명을
여러차례 해두었습니다.
ㄱ, ㄴ은 연속성, 미분가능성에 대한
교과서 적인 풀이를 적용하시면 되겠구요.
ㄷ에서는
이차함수의 정적분의 공식을
적용하면 계산을 단축할 수 있습니다.
아래는 2024 이동훈 기출 수학2의
예제 설명입니다.
딱 보자마자 작년 수능 15번을 떠올리게 되지요.
작년 수능 문제의 영혼 없는 버전이라고 보시면 됩니다.
표 또는 수형도를 그리면서 각 항에 올 수 있는
수를 판단하면 됩니다.
이건 특정한 이론이 필요하다기 보다는
경험적인 것이긴 한데요.
다만 증가와 감소를 반복한다는 점에서
주기함수 임을 알 수 있긴 합니다.
(이에 대해서는 6월 전에 따로
칼럼을 올려드릴 것입니다.)
이 문제는 아래의 글로 대신합니다.
[이동훈t] 평행이동을 해도 변하지 않는 성질 (+230320) 수학2
이 문제를 풀면
반복되는 항을 포함한 두 등식을 얻게 됩니다.
2번 이상 반복되는 항은 반드시 치환해야 하는데요.
이에 대해서는
2024 이동훈 기출 수학1에서
자세하게 설명해두었습니다.
이 문제 보자마자 아래의 9모 문제가 떠올라야 합니다.
위의 문제에
절댓값이 붙은 4차함수의
미분가능성이 결합되었다고
보시면 됩니다.
아래는 이 주제에 대한 기출문제의
풀이입니다.
(2024 이동훈 기출 수학2 수록)
이런 풀이과정은 반드시
익혀두어야 하겠지요.
수능은
그때그때 생각나는대로
푸는 것이 절대 아닙니다.
< 확률과 통계 >
교과서 연습문제에도 있는 문제입니다.
위, 아래 똑같죠?
다른 공, 다른 주머니에 해당하는 문제입니다.
(이 주제도 꼼꼼하게 학습해두어야 합니다.)
그냥 뭐 ... 같습니다.
J040 기출에 원순열을 결합한 문제입니다.
새로운 유형이라기 보다는
새로운 결합에 해당합니다.
J030 처럼
(1) 수(대상)을 선택하고
(2) 이를 나열한다. 이때, 같은 것이 있는 순열의 수를 이용한다.
라는 관점에서 같습니다.
이와 유사한 문제들은 워낙 많습니다.
이 문제 역시 ...
새로운 유형이라기 보다는
새로운 결합입니다.
아래의 두 문제를 묶었다고 보면 되겠습니다.
+여사건 포함
그래서 풀다보면 ...
어디선가 써본 풀이 같고 ...
뭐 그렇습니다.
< 미적분 >
속도의 관점에서 an = 3^n 으로 두면 됩니다.
위의 개념 설명은 2024 이동훈 기출 미적분 편에 수록되어 있습니다.
역시 다항함수의 속도에 대한 문제입니다.
위의 개념 설명은 2024 이동훈 기출 미적분 편에 수록되어 있습니다.
치환에 대한 문제인데요.
사실 1을 모두 지우고, 근사적인 계산을 해도 좋습니다.
이에 대한 개념 설명은 2024 이동훈 기출 미적분 편에 수록되어 있습니다.
수열의 합과 차 (수학1) + 수열의 극한
이 물리적으로 결합된 문제입니다.
위의 개념 설명은 2024 이동훈 기출 수학1 편에 수록되어 있습니다.
0<a<1, a>1 로 나누는 행동을
반드시 손에 익혀두어야 하는데요.
아래의 문제에서 이에 대한
연습을 하게 됩니다.
(2024 이동훈 기출 수학1 수록)
이 기출과 연관되어 볼 수도 있고 ...
사실 부등식 주고 자연수의 개수를 구하라는 문제는
워낙에 많으니까요. (특히 교사경에...)
수열의 극한값 구할 때에는
아래의 실전이론에 대한 이해가 반드시 필요합니다.
아래의 개념 설명은 2024 이동훈 기출 미적분 편에 수록되어 있습니다.
이 문제는 사실상
도형의 확대, 축소에 대한
이해를 평가하고 있습니다.
아래의 개념 설명은 2024 이동훈 기출 수학1 편에 수록되어 있습니다.
< 기하 >
이 문제를 읽자마자 아래의 문제가 떠올라야죠.
이 문제 보자마자 아래의 문제가 생각나야 합니다.
추가적인 설명은 아래의 글을 참고하세요.
[이동훈t] 한 각을 공유하는 두 삼각형 (+230330기하) 수학1 + 기하
위의 두 기출문제는
삼각형(사다리꼴 포함)에서의
닮음을 평가하고 있습니다.
이차곡선에서는
삼각형(사다리꼴 포함)에서의
닮음비를 자주 묻습니다.
이 문제는
이차함수의 정의와
한 꼭짓점을 공유하는 2개의 삼각형를
결합된 것인데요.
이에 대한 설명은 2024 이동훈 기출 수학1에서 해두었습니다.
쭉 읽어보신 분들은 아시겠지만 ...
올해 3월 학평 수학은
기출과 수능 실전 개념에서
절대 벗어나지 않습니다.
평가원 기출 3회독,
(+수능 실전 개념 포함)
교사경 기출 2회독
이면 6월에서
당연히 1등급을
쟁취할 수 있습니다.
하고 싶은 공부를 해서는 안됩니다.
해야 하는 공부를 하길 바랍니다.
오늘도 열공 ~!
ㅎㅍ ~!
2024 이동훈 기출
2024 이동훈 기출 실전이론 목록
2024 이동훈 기출 문항수, 페이지 수
아래의 5 타이틀은 판매 중입니다.
2024 이동훈 기출 + 개념 수학Ⅰ 평가원 편 33,000원 (오르비 할인가 29,700원) 판매 중
2024 이동훈 기출 + 개념 수학Ⅱ 평가원 편 33,000원 (오르비 할인가 29,700원) 판매 중
2024 이동훈 기출 수학Ⅰ+수학Ⅱ 교사경 편 33,000원 (오르비 할인가 29,700원) 판매 중
2024 이동훈 기출 미적분 교사경 편 33,000원 (오르비 할인가 29,700원) 판매 중
2024 이동훈 기출 + 개념 미적분 평가원 편 36,000원 (오르비 할인가 32,400원) 판매 중
아래의 2 타이틀은 전자책만 출시됩니다.
2024 이동훈 기출 + 개념 기하 평가원/교사경 편 4월 중
2024 이동훈 기출 + 개념 확률과 통계 평가원/교사경 편 4월 중
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
게이력 ㅁㅌㅊ? 0
이정도는되야지
-
폭낼 셈인가
-
이제 안 후한듯 ㅅㅂ
-
저는 남들이랑은 좀 다르게 가장 깊은 구석 자리가 싫었어요 0
사물함 2개 쓰는 이점은은 둘쨰 치고 공부할떄 하얀 벽을 쳐다봐야 한다는 상상에...
-
저녁 추천 받음 1
ㅇㅇ
-
무휴반이심 아님 1학기하고 반수하시는 거임??
-
낙지업뎃함오늘? 1
??
-
장난 똥때리냐 1
낙지 진짜 ㅋㅋ
-
상경 써볼만 하려나… 근데 여러분은 문디컬 대 설상경 어디 고를거 같음?
-
언매 131 96 미적 122 87 영어 2 한국사4 물2 65 88 지2 63....
-
그와중에 설농경제 왜 5칸이냐고 이러다 다 죽어
-
7칸 -> 6칸 하... 50명 뽑는 과인데 주말동안 4등수 떨어짐 충격
-
무슨 전라도 읍내 수준인데 ㅆㅂ
-
40명 뽑는데 41등까지 최초합을 줘?
-
딱히 변동없군 1
ㅇㅇㅇ
-
저녁 메뉴결정함 5
닭도리탕임
-
허 참..
-
대일이만국 0
-
서성한 가능할까요?
-
2025 메가 환급 링크 안 보이는데 어딨나여 그 조건 충족 여부 나오는 사이트요
-
ㅈ됐다 제발 멈춰
-
수2 자작문제 0
발문이 애매한 문제인 것 같아 글을 올려봅니다. 2023 수능 22번 문제 참고하여...
-
나만 빼고 다 크리스마스야
-
음
-
흠 머지 4
오른데가 많네
-
사실 극단주의에 있었던 것은 내가 아닐까 오늘부터 민초먹어야겠다
-
내가 개떡같이 공부하긴 했음
-
득실차로 인한 2위지만 바셀보다 한경기 안했죠?
-
이제 떨어질일만남은건가요
-
3번 문제 어떻게 풀어야 할까요.... 대학교 문제입니다
-
연대식 고대식 0
연대식 700 고대식 663 선호도는 연대인데.. 들어갔다가 복전이나 전과 어케 생각하시나요
-
언확영정법사문 92/89/3/99/92 이예요 반수라서 원서 쓸지 말지 고민되서...
-
09딱기다려
-
디맥이나 할까 2
-
놀랍게도 언미화지… 입니다 수학 못하는 이과는 어디 써야해요…..? 하
-
낙지 4칸 텔그 58
-
중경외시 라인 점점 들어온드아.... 무서워
-
분석중 0
드가자
-
언매 낮2~높3 미적 낮2~높3 영어 1 사문 1 화학 4 화학 버리고 생윤갈...
-
10명 정도 되는 소수과라 너무 불안해요... 지원하는 학교 계열에서 3개년동안...
-
이대 0
먼가 이대 인식은 앞으로 계속 그대로일거다. 입결 상관없이 여대중에 제일 높으니까...
-
문찐 벗어나기 힘들다 10
눈코입을 22살에 처음 불러본 남자.. 뉴진스 노래를 21살 4월에 처음 들어본 남자..
-
연락 같은 거 왔나요? 원래 안 오는 거임? 원서 쓸 때 오려나
-
하다못해 음운 변동이라도 알고 있으면 생각보다 그 다음 단계는 수월함 매체는 그냥 화작이고
-
진학사 분석중 5
ㅎ.ㅎ
-
합격증 올렸는데... 쳇 빨리 해조
-
평생이라해도 3년남짓이지만.. 이제는 슬프지만 놓아줘야겠어 생명과학과 함께할게..
-
ㅈㄱㄴ
첫번째 댓글의 주인공이 되어보세요.