[이동훈t] 기출로 기출 풀기 (241128) 미적분
게시글 주소: https://wwww.orbi.kr/00067438040
안녕하세요.
이동훈 기출문제집의
이동훈 입니다.
오늘은
기출로 기출 푸는 법에 대한
얘기를 해보려고 합니다.
이 글은
기출 분석을 어떻게 해야 하는가에 대한
구체적인 예시가 될 것입니다.
22 학년도 수능 미적분 30 번
24 학년도 수능 미적분 28 번
이 두 문제로 설명해보겠습니다.
본론 들어가기 전에
수학 기본 체력에 대한
아래의 글도 함 읽어보시고요.
[이동훈t] 수학은 피지컬이지. 딴거 있나.
이제 가보자고 ~
시험장에서
위의 문제를 읽고 나서 바로 ...
푸른 칸 : 함수 f(x)의 정의 (방정식, 그래프)
붉은 칸 : 점의 이동 (대칭/평행/확대축소) + 식의 변형(필충관계)
위의 두 가지가 떠오르지 않았다면
아래 문제에 대한 이론적 복습이
부족한 것입니다.
위의 문제에 대한 자세한 해석은
아래의 글을 참고하시구요.
[이동훈t] 수능 난문 만드는 법 (+221130, 231122) 수학2, 미적분
22 학년도 미적분 30 번과
24 학년도 미적분 28 번은
큰 틀에서 문제의 구조가 같고,
소재로 보면 자매 입니다.
221130(미적분)은
점의 확대축소로
두 함수 f(x), g(x)를 결정하고,
(적분계산: 부분적분법(역함수의 정적분+기하적해석))
241128(미적분)은
점의 평행/대칭이동, 확대축소로
함수 f(x)의 방정식을 결정합니다.
(적분계산: 치환적분법)
2년 전에 확대축소만 출제되었으니,
평행/대칭이동의 관점까지 추가해서 출제한다.
그리고 부분적분법에서 치환적분법으로 바꾼다.
교육과정에서 보면 ...
평행이동 + 대칭이동 + 확대축소 = 점의 이동
부분적분법 + 치환적분법 = 초월함수의 적분법
이고 ...
이건 평가원 출제자들의
전형적인 출제 방식을 보여줍니다.
즉, 출제자들은 본인들이 만든 문제 A를 보면서
A 합 A^C = 전체
에서 A^C 에 해당하는 지점을 찾기 위해 노력 한다는 것입니다.
이렇게 하면
각 문항의 정답률을
원하는 대로 얻을 확률이 높아지지요.
나는 28 번 문제 생김만 보고서
' 아 이건 재작년 30 번에서 나온 문제네. '
라는 생각이 들었는데요...
안정적인 만점을 노리는 분들은
이 정도는 쉽게 보여야 합니다.
.
.
.
교육과정의 체계에서
이 문제를 분석해 볼까요 ?
f(9)/f(8) 의 값을 구하라고 하였으므로
함수 f(x) 의 방정식을 유도해야 합니다.
이때, 상수 k 의 값을 결정해야 하니,
구간 [0, 7] 에서의 정적분 값이 e^4-1 이다.
에서 k 의 값이 유도된다는 생각을 할 수 있어야 합니다.
중/고등 교육과정의 체계상
집합 -> 함수 -> 정적분
이므로, 이 문제의 주어진 조건에서
집합(정의역, 치역),
함수(의 방정식, 그래프, ...)
를 우선 살펴보아야 합니다.
함수(즉, 그래프)는 점들의 집합이므로
곡선 y=f(x) 가 지나는 점을 찍어야 한다.
곡선 y=f(x) 가 반드시 지나는 점을 찍으면
(g(t), t), (h(t), t)
인데. 붉은 칸에서
h(x) = k - 2g(x)
라고 하였으므로
(g(t), t), (k-2g(t), t)
입니다. 이때, 점의 이동의 관점에서
k-2g(t) 는 x 축 위의 g(t) 를
y축에 대하여 대칭이동시킨 후,
y축에 대하여 2배 하고,
x축의 방향으로 k만큼 평행이동시킨 것입니다.
이제 아래의 그림과 같이
함수 f(x)의 그래프를
그릴 수 있습니다.
(아래는 2025 이동훈 기출 미적분 풀이)
위의 풀이에서
정의역 : 실수 전체의 집합 = (-inf, 0) 합 [0, k) 합 [k, inf)
치역 : 음이 아닌 실수 전체의 집합
함수 : 두 구간 (-inf, 0], [k, inf) 에서 일대일 대응(방정식까지 유도됨)
구간 [0, k]에서 f(x)=0 (<-귀류법 이용)
정의역을 2개 이상의 집합으로 쪼개는 것,
각 구간에서 함수 f(x)의 방정식을 결정하고,
성립하는 성질을 생각하는 것,
귀류법을 적용하는 것,
막상 직접 출제 범위는 별 것 없는 쉬운 계산이라는 것,
... 등등이
이건 수능 문제야 !
라고 말하는 것 같습니다.
(이 문제의 경우에는
세 개의 구간으로 쪼개서 ...
두 개의 구간에서는 일대일함수,
나머지 한 구간에서는 상수함수임을 밝혀야 하지요.
이 과정에서 귀류법을 써야 하고요.)
.
.
.
잘 만들어진 수능 문제를 보면 ...
출제자들이 교육과정과
본인들이 만든 기출 문제를
얼마나 잘 이해하고 있는지를
알 수 있습니다.
.
.
.
이번주 중에
2024 수능 수학에 대한 심층분석글을
올려드릴 예정입니다.
또 만나요 ~~!
ㅎㅍ~
2025 이동훈 기출 사용법 (+실물사진)
2025 이동훈 기출 실전 개념 목차
(참고로 2025 이동훈 기출은 수분감 + 뉴런 포지션 입니다.)
[이동훈t] 학습법, 수학 칼럼 링크 모음 ('23~'24)
고1 평가원 기출문제집 (PDF 무료 배포)
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
이 쌤 캐스트는 올라올 때마다 다 봄
-
본인학교 몰카덮음 14
올해초에 고1남자애들이 몰타로 여자화장실 ㄷ촬한거 지들이 떠벌리고 다닌거 학교에서 덮었음 ㅋㅋ
-
이제 수학만 남았는데 사인 어디다가 받지.. 100점받은 실모, 아직 뭔지모르는...
-
수능에서도 1 가능?
-
30분째 친구랑 노가리까면서 케이블 컬 하는 새끼 왤케 열받지
-
10투스 후기 0
일단 점수는 국어 93 수학 96 영어 62 사문 44 정법 50 국어는 깔끔함을...
-
개념형에서 뭘 쳐봤길래 2개씩 틀렸누;
-
질문받는다
-
올해 빡세? 3점짜리라도 풀까? 아님 걍 이신혁 선별만 풀까
-
실모 풀때 급똥 6
어떻게 함 지금 그 상황인데
-
그냥 전투력 5000배 상승
-
2025 6월은 문학 34번 빼고 다맞았거든요.. 둘다 현장에서 응시한건데 문제는...
-
10투스 성적표 ㅇㅈ 24
다음 인증은 수능성적표로 찾아오겠습니다
-
킬캠 설맞이 다 70점대 겨우 80점대 가는데 시즌 5 푸니깐 두 회차 다 92...
-
식센모 화이트 왜냐면 점수가 잘나와서
-
서바이벌 수학 등급컷 나와있는거 실제 표본으로 한게 아니고 보정시킨거죠??
-
설맞이 미적분 2
라벨 9 다맞아서 기분좋음 ㅎㅎ
-
사회안나오면 풀거없는데 ㅅㅂ
-
미친놈들인가
-
아무리 5억 줬다지만...
-
병원에서 처방해주는 스프레이 인데 뿌리고 한 30분 지나면 멀쩡해짐
-
박선 2024데브 시즌 3 답지 있으신 분..
-
이런 경우 보통 어떻게됨?
-
6연벙 ㅅㅂ
-
제발그렇다고해주세요
-
좆같좆같 열매를 너무 많이 맥인거같은데 시간안에 다 풀지를 못하겠음
-
지금 내 심정 2
-
대신 분석해 드립니다
-
거기서 거긴가요?
-
고앵 고앵 ~~~ ㅎㅎ
-
아니 열심히 햇는데 잘하지 못하는 내 모습을 볼 때마다 자괴감이 너무 들어서 더...
-
뭔가 재밌는게 필요해요
-
소재가 없군
-
이 시점에 0
현상태 수학 12나 13부터 막히고 수열나올땐 15나 20 맞춤 확통은 29 30...
-
사회과학/과학/철학 교수님들은 1교시보다는 4교시를 목적으로 섭외되는 분들임 ㅇㅇ
-
두각 현강 0
김승리쌤 토요일 오전 현강 아까 8시쯤 수강신청했는데 개강 전까지 빠질까요?ㅠㅠ
-
작년 6월(점수) 언확영정법사문 순 74 72 51 48 50 4 3 5 1 1...
-
브레턴우즈도 솔직히 10
다시보면 그정도로 막 어려운 것 같진 않은데 생소한 단어가 좀 많아서 그런건가?...
-
고등학교의 풋풋한 학창생활을 집어치우고 끔찍한 수능판으로 뛰어들었는데 수능 망하면...
-
원래다 겪는다는건 아는데 속터질듯이 답답하고 슬픔
-
부정행위 처리 안되나요? 국어 이후 과목부터는 책상세 시험지, omr 외에 수험표에...
-
+1 생각하고 안버리는 내가 참 부끄럽네 실모도 다들 1번보고 쿨하게 버리더라 내가 이상한거였음
-
거의 22~23쯤 쓴거같은데 찔끔쓰다 새로사고를 n번
-
어떻게지내려나 현역때 도움 많이 받았는데...옯비 다시 안오셔서 근황은모름
-
수능 8일 남았는데 단 간식이나 카페인이나 이런거 지금부터라도 끊어야겠죠? 그...
-
없나용.. 시간 개부족할거같아서 가채점표는 생각도 안 하고 있었는데 생각보다...
-
존나어렵게 내놓고 죄송스러운마음이네요는;;,
-
어라라 40
아니 근데 나인거 알았으면 팔로우 해주징 왜 안보이지 아니면 이미 맞팔인 상태인가...
선생님 쪽지 좀 봐주세요.
답장 보냈습니다. 감사합니다. :)
혹시 교재에서도 이러한 기출 간의 상관관계에 대해 언급해주시나요?
2025 이동훈 기출은 유형별 구성이며, 각 유형에 대한 실전 개념이 포함되어 있습니다.
위의 두 문제의 경우 ... 30번은 역함수의 미분법, 28번은 치환적분법에 해당하므로 같은 유형이 아닙니다. 다만 점에 대한 해석의 관점에서 같고 ... 이에 대해서는 실전 개념에서 설명하고 있습니다. (다만 위의 칼럼 처럼 직접적으로 두 문제를 대조비교하는 것은 아닙니다. 점의 해석을 어떻게 할 것인가에 대해서 실전 개념에서 다루는 것입니다. 이에 대한 문제는 워낙 많기 때문에 ... 위의 설명 처럼 두 문제만 딱 짚어서 대조 비교 하기 힘듭니다. 책이니까요.)
자세한 책 소개 글은 아래를 참고하세요. 감사합니다. ~ :)
[이동훈t] 2025 이동훈 기출 사용법 (+실물사진)
https://orbi.kr/00066537545