이차함수 공통접선 뒷북과 확장
게시글 주소: https://wwww.orbi.kr/00068696503
오랜만에 오르비 들어와서 눈팅이나 좀 하다가
수학 질문글을 발견했습니다.
질문은 아래와 같습니다.
(원본링크는 댓글에 있어요.)
아래 그림과 같이 교점이 없고 최고차 부호 다른 두 이차함수에 대해 반드시 두 개의 공통접선이 존재하냐는 겁니다.
여러분은 어떻게 생각하시나요?
다른 좋은 방법도 많겠다만...
질문을 보자마자 제가 떠올린 건 차이함수입니다.
저 그림은 사실,
이거랑 똑같은 그림이에요.
"이거"가 뭐냐면 축이 일치되어 있고 부호는 다른 이차함수입니다.
이 경우에는 당연히 접선 두 개 날릴 수 있겠죠.
그림이 선대칭이므로 한쪽에 그을 수 있다면
그 반대편에도 똑같이 그을 수 있으니까요.
두 접선은 기울기의 절댓값도 같을 겁니다.
그럼 요지는 이겁니다.
왜 질문자의 그림이 위 그림으로 바뀔 수 있는 것일까요?
어... 답은 되게 간단한데요,
그냥 그림의 모든 함수에다가 적절한 일차함수를 빼줘서
축을 움직여가지고 반드시 일치시킬 수 있기 때문입니다.
근데 그림의 모든 함수에 적절한 일차함수를 뺀다는 게 도대체 무슨 말일까요?
아래 평가원 기출 문제를 보겠습니다.
일단 문제상황을 그려보면 다음과 같습니다.
근데 여기 보이는 모든 함수에다가 y=ax를 뺄거에요.
이때 중요한 점은, 교점의 x좌표들이 모두 유지된다는 것입니다.
왜일까요?
방정식의 관점에서 보면 그 답을 쉽게 찾을 수 있습니다.
방정식 f(x)=ax+b의 해를 구하나,
방정식 f(x)-ax= b의 해를 구하나
당연히 똑같은 해가 나올 겁니다.
두 접선이 만나는 점의 x좌표, 즉 k는 왜 유지되는지도 볼까요?
왼쪽 빨간색 접선 식을 mx+n, 오른쪽 접선 식을 px+q라 할게요.
그러면...
위를 계산하나 아래를 계산하나 해는 똑같겠죠.
그래서 전체 그림에 동일한 함수를 빼도 x좌표는 유지가 되는 겁니다.
그래서 한 번 빼볼게요.
그럼 이렇게 나올 겁니다.
사차함수가 선대칭이므로 k는 아무 계산 없이 1/2이라는 걸 알 수 있어요.
전체 그림에 함수를 "빼는" 것만 가능한가요?
아니요!
전체 그림에 함수를 나눌 수도 있습니다.
이미 여러분들이 아주 많이 쓰고 있는 스킬이에요.
궁금한 분들은 아래 링크를 타고 들어가시면 됩니다.
아 가기 전에 좋아요는 누르고 가주세요!!!
도움이 됐다면요.
#무민
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
부산대 역교과 0
예비 16인데 가능할까요...??
-
지듣노 0
간만에 한국곡 이어지는거 크
-
겨우 다운받았네...
-
일단 진학사 사긴 샀는데 지거국은 (심지어 하위임) 진학사 안사는 경우도 많다고...
-
오르비 지박령 됐네 아ㅋㅋ 아저씨 나잇값 좀
-
커피 5만원이 찐 공포여..
-
근데 얼굴만 보고 사랑에 빠진다 이거 잘 모르겠음 13
옆에서 귀여운짓 계속 하는걸 봐야 호감이 가던데 그래서 6개월 동안 썸탄 사람이랑...
-
반영비 맞기가 힘들긴 해.. 국잘문과인데 sky 성적이여야 올해 레전드 빵이...
-
25 수능 생지 백분위 91 92 이었고 한의대 목표로 재수하려합니다 사탐런 정배 과목있을까요…
-
다 발라줄 수 있음
-
진짜들은 번따하는것조차못한다고...
-
저녁운동완뇨 1
만족스럽군 조만간외모백분위4를 탈출할수잇지않을까요?
-
번따 한번도 안해봄 실업팀 들어가기전에 알바했을때 번호교환이 끝임
-
대체 기존 의대생들 왜이리 25학번에게 국시 못볼거라고 협박하고 다니는거죠?...
-
무협 재밌음? 0
ㅈㄴ 재밌으니까 재밌는 작품 좀 추천 좀
-
안녕하세요 3
주말이 다 저물었네요 다들 알차게 주말 보내셨는지용
-
바짓가랑이붙잡으려고 했던 내가 뭐였을까
-
님들이라면 어디가실껀가요???
-
나도 모르지ㅇㅇ..
-
궁금한게 있는데 현장에서 응시 못하면 어쩔수없이.. 유빈…이 올라오면 뽑아서...
-
급 슬퍼지네요
-
이상형 8
하고 연락하고 지내다가 까였음 몇달째 정신상태가 고르지 못함.
-
저 한 사람한테 3번했다 손절당함..
-
그저 침묵을 유지하고 있는 나 나는 아무것도 말할 수가 없어요
-
나보다 내신도 낮고 하강곡선 그린 앤데 나 떨어진거 알려줬더니 30분뒤에 전화와서...
-
번따나 인따 시도해보시는 걸 추천함.. 제가 1년 전에 지금까지 본 사람 중 제일...
-
성별바뀌면 레즈는 할 수 있을거 같음
-
밷호쌤은 개념이 좋은데 유전이 아쉽다는 평이 많고 한종철쌤은 유전은 괜찮은데 개념이...
-
이 모든 상황이 좆같아서 눈물만 나옴
-
안녕하세요! 저는 이번에 인문논술전형으로 이화여자대학교에 최초합하게 되었습니다....
-
텔그랑 진학사 다 사서 고속까지 구매하기 부담스러운데 제 성적 한번만 돌려주실...
-
도대체 뭘 봤다고 무턱대고 번호 따냐 ㄹㅇ 그냥 육체적인 관계를 하고 싶어서자너
-
나는 번따를 할 생각을 못해봤는데 에초에 결과가 정해져 있어서 굳이 싶음
-
후한건가요? 짠건가요 ????
-
살짝 감동이네 한 기수 후배가 자기 말출이라고 기타치면서 노래해줌.. 내 감성ㅠ
-
초콜릿으로 해야징
-
빅5 간호대도 떡상할듯
-
윤도영 정시상담 보는데 내가 생각하는 조합이랑 거의 똑같아서 놀람 헉
-
헬조선 ㄹㅈㄷ 0
ㅋㅋㅋ
-
https://2022.colormytree.me/2022/01GM15B698JY2F...
-
키오스크로 내 음식 주문을 하고 있는데 어깨쪽에 자꾸 뭐가 닿는 느낌이 들음 뭐지?...
-
통통이 68점입니다 오티보면 뉴런 못들을거 같긴한데 둘다 실전개념이고 아이디어도...
-
감동적이야
-
성균관대 자연과학계열 서강대 화공생명공학과 고려대 건축사회환경공학과 진짜...
-
이나이먹고 모솔인데 14
삼수생인데 대학가면 연애할수있을까요 참고로 여자임
-
전 저를 사랑합니다 10
뻥임뇨
-
긴 이야기고 그냥 제 맘 가는대로 쓴거라 달라질 수 있음 그래도 보고 싶으시면 내일 보셈요
-
이거 변표때문에 쫄아있으면 그냥 야추 뗄까요?
-
ㅁㅌㅊ임요 ㅋㅋㅋ 첫 대화가 페메로 고백임
질문자 원본 글입니다.
https://orbi.kr/00068687892
정시의벽이 쏘아올린 공
ㄷㄷ닉언
캬ㅑㅑㅑ무민 님ㄷㄷㄷ