2025年 사관학교 27,28,29,30 Solution
게시글 주소: https://wwww.orbi.kr/00068826272
오늘 시행된 25학년도 사관학교 1차시험 수학의 난이도는 꽤 높은 편으로, 변별문항의 난이도 역시 작년 수능에 지지 않는 시험지었습니다.
공통 영역에서 주목할만한 문항들은 11번, 15번, 20번, 21번, 22번으로 특수한 상황에서 일반적인 상황으로의 함수 세팅으로 변화하는 경향을 잘 보여주는 문항들로, 특수할 때를 가정해서 풀이하는 방법보다는 주어진 조건들을 기저적인 상황에서부터 차근차근 따져보는 능력을 요구하고 있습니다.
기하 문항은 공통 영역에 비해 다행히 전형적인 편으로 26번, 27번 같은 지뢰 문항들을 잘 해결하였다면 공통에서 시간을 확보하셨다면 충분히 해결하실 수 있는 문항들이었습니다.
27. #복잡한 계산을 만나면 잠시 차분해지자 #내적의 기하적 의미
도형 안에 내분점 / 외분점이 존재하고 길이비가 주어질 때 경험적으로, 사교좌표계나 t,1-t 내분점 공식을 이용해 만나는 교점 벡터를 표현하고, 이를 주어진 길이나 내적값을 이용해 연산하는 유형이 주로 출제되었었죠.
"아! 나는 뭔가 많이 아는게 있어!" 라고 기저벡터를 세팅.... 하면
좌표로 표현하면 뭔가 쎄한 느낌이 들며 내가 계산을 제대로 한게 맞나..? 하는 의문을 들게 하는 숫자들이 튀어나옵니다.
여기서 계산을 밀고 나가는 순간.. 빡빡한 공통 영역에서의 시간 소모로 인해 28, 29, 30에 치명적인 타격을 주게 되는 지뢰같은 문항입니다. (22.06.27과 비슷한 느낌입니다)
기하러로서 결론부의 AB+AC를 2AM으로 평균벡터를 이용하고 싶은 마음이 들지만 참아야 합니다..! 내적의 연산 성질을 이용해 식을 분리, 내적의 기하적 의미가 사영곱임을 이용하면 너무나 간단하게 해결하실 수 있습니다.
28. #이차곡선의 정의요소 #코사인 법칙1. 이차곡선의 정의요소 이용하기 -> PF'-PF=2a에서 PQ가 날라가니 QF'=2a를 얻습니다.
2. 이차곡선의 정의요소 이용하기 -> Q는 쌍곡선 위의 점이니 QF-QF'=2a에서 QF=4a를 얻습니다.
3. 조건 뜯기 -> (나)에서 둘레의 길이가 20이라 주어졌으니, PF=PQ=10-2a를 얻습니다.
4. 부분/ 전체길이 이용하기 -> PQ+QF'=10이고, 타원의 장축의 길이가 18이니 PF=8=10-2a, a=1을 얻습니다.
5. 결론부 확인 - 코사인 법칙의 이용 -> P의 x좌표가 궁금하니, 삼각형의 아랫변 길이가 궁금합니다 -> 코사인 법칙을 이용해 구하는 값을 얻습니다.
29. #끼인 평면의 작도 #코사인법칙
1. 끼인 평면 작도하기 -> 주어진 도형의 바닥이 직사각형 베이스이기에 수선의 발의 위치가 명확합니다. 수선의 발 X를 내리고 O와
연결하면 끼인 평면 AXO를 작도할 수 있습니다.
2. 공간도형 길이 분석하기 -> 모서리 길이 BO=2, BO'은 BD의 중점이니 BO'=3/2, XO'=BO'-BX로 주변 길이를 이용해 XO'을 구한 후 피타고라스를 통해 OXO'을 분석합니다.
3. 결론부 확인, 코사인 법칙의 당위성 -> 결론부가 BH의 제곱을 묻고 있고, 삼각형 BXH의 두 변과 호환되는 둔각에 대응하는 예각을 알고 있으므로, 코사인 법칙을 이용해 구하는 값을 얻을 수 있습니다.
30. #벡터의 합/차 #벡터의 최대/최소 #23.06.30 변형
1. 주어진 기하 상황 인지하기 / 작도하기
2. 벡터는 평행이동이 자유로움 -> OP+OQ=OX로 표현, OQ를 도형으로 생각하고 OP만큼 평행이동하였다고 생각하며 X의 영역을 구합니다.
3. 최대/최소는 원의 중심을 기준으로 사고하기 -> 주어진 영역 안에서 Xmin, Xmax를 구합니다
4. 명확한 수직의 틀 -> 성분화를 통해 구하는 길이를 얻을 수 있습니다.
무더운 한여름임에도 불구하고 사관학교 시험에 응시하여 최선을 다하신 여러분, 혹은 각자의 위치에서 열심히 공부하고 계신 여러분,
변함없이 여러분을 응원하겠습니다 :D
오늘 하루도 정말 수고하셨어요!
읽어주셔서 정말 감사드려요 :)
0 XDK (+10,000)
-
10,000
-
작수생윤 0
현장에서 블랭크날수도있겠다싶었던분계신가요 사후적이긴한데 ㅈㄹ쉽게나온거같긴해서
-
오르비 망했네 0
-
궁금해
-
나에게 빼빼로란 0
1111111임 내신!
-
첨엔 둘 차이 별로 없는 줄 알았는데 그립 두께가 너무 차이가 많이 나서 오랜만에...
-
아 뛰고싶다 0
오늘 진짜 뛰어야되는데
-
정시:대학가야한다 국영수탐탐백분위99 수시:딸깍 ㅋㅋㅋㅋㅋㅋ
-
추운 오늘 하루도 화이팅
-
슬퍼서 울었어 0
원래 과도 안 맞고 전과하려는 과도 열심히 공부했는데 성적이 안나와서 너무 슬퍼서...
-
얼버기 0
귀여운 코무기 보고가
-
이걸 걸러야돼 말아야돼... 반면 상상 8 9 10에는 이감 B도 있어서 이걸 더...
-
새해의 눈시울이 순수의 얼음꽃, 승천한 눈물들이 다시 땅 위에 떨구이는 백설을 담고 온다.
-
이감에 시즌6이랑 파이널2랑 같은거지? 국어 파이널2 7차면 이감 시즌6 7회차...
-
국어-이번주까지 실모+언매 양치기, 다음주부터 24 69수능, 2506 기출 ,...
-
오늘은 긴바지를 8
착용 쌀랑해
-
수능 도시락 0
본가말고 타지역에서 수능보는데 도시락을 어케해야할까요..
-
ㄹㅇ 이정도면 사교육판에서 참강사임 내 구 담임들보다 좋은듯
-
한의원 가서 침 맞으면 도움 좀 되나요?? 고개 조금만 숙이고 있어도 땡김..
-
공부하려고 책 펴도 힘들었던 일들이 계속 생각나고 집중할 수가 없음
-
탐구연계 0
탐구 수완 연계는 어느정도 유의미한가요.. 물리 화학 기준으로여 물리 수완 아직...
-
박석준T 듣는데 수업에서 연계 예상 이런건 잘 안 해주셔서... 출제기조 자체...
-
ㅈㄱㄴ
-
이건좀
-
짜피 고대 서강 성균관 밖에 안 썼는데.. 여기에서는 납치 당하고 싶어서요
-
얼버기 2
늦버기...
-
시작
-
강대x 2컷~2컷+8정도 나옴
-
오늘도 파이팅.
-
얼버기상 1
오늘도 또! 버러지 같이 시간을 낭비하겠군
-
에구궁 졸려 1
준비 갈 완료
-
하면 얼어죽을듯
-
하늘을 찌르는 SOXL + 트럼프 밈주 + 환율 폭등 1000만원으로 하루만에...
-
기하는 풀이 없는 것 같아서 올려봅니다. 28 빼고 시간재고 푼 풀이고 28은...
-
얼버기 2
앞줄 어느방은 2시부터 4시간동안 알람을 안꺼??
-
반팔 입어야징
-
얼버기 8
후후후
-
尹대통령, 오늘 대국민 담화·회견…대통령실 "모든 사안 설명" 2
국정쇄신 방안·명태균 논란·김여사 문제 등에 직접 답변 (서울=연합뉴스) 곽민서...
-
자세한 것은 눈 좀 붙이고 수업 끝난 후에 공지사항 올리겠음요. 공지사항 올라가면...
-
와 2도야 미친 2
ㄹㅇ 세종대왕님인가 ㅈㄴ 춥네
-
독서 사회,경제:아웃소싱->국제적으로(오프쇼어링)+경상수지...
-
생1에서 윤도영 아니면 만점 힘들 정도로 절대적임?
-
일탈행위의 발생과정에서 나타나는 상호작용에 주목하는가? 에 맞는게 차별적교제이론...
-
1. 대망의 첫 수능 이후 의과대학 성적과 수능 성적의 상관계수를 내본 논문의...
-
꼼꼼히 한다 하면 개념 얼마나 걸려요..???
-
얼버잠 1
다들 평안한 밤 되십시오. 소등하겠슴다.
-
책 왕창 빌리고 샀는데 시간 순삭이넴 글고 안 유명한데 재밌는 책 발견하면 좀 짜릿함ㅎ
-
진짜 집에 아직도 있는게 소름이넹 ㅋㅋㅋ
-
A 소유의 □□ 상가를 임차하여 창고업을 운영하고 있는 B는 미성년자 갑을 적법한...
23.06.30번 문항입니다!
완젼멋져요
고마워요!! 하이샵님 :)
시험지에 그린 그림만 보면 미적분 뺨 후려치는거같은데 진짜 꿀 맞나요????
미적분/기하 모두 장단점이 명확하다고 생각해요..!
기하는 그림이 복잡한 대신 계산량이 현저히 적은 편이에요 :)
대충 10분걸리는 기하문제 기준
상황파악 + 그림 이쁘게 그리기 9분
계산 1분
형님 멋있습니다!!
캬
비쥬얼은 흉악해보이지만, 낯선 문항이 없기에 기하 기출학습이 잘 되어있다면 + 시간만 충분하시다면 편하게 해결하실 수 있을 문항들이에요..!!
고마워요 :)
기하라니 근본있네요
天才
역시 기하는 약연 ㅋㅋㅋㅋㅋ
진짜 기벡 고수 치사토 찬양하기
기“벡”이 핵심일려나
헉
님
고마워요 질감님 :)
마지막문제 역벡터로 풀어도 예쁘게풀리더라고용
27번 그냥 피타 벅벅했는데