171130 풀이?해설?
게시글 주소: https://wwww.orbi.kr/00068997678
솔직히 이거보단 230622같은 게 훨씬 어렵다고 생각해요 그래서 글은 다소 긴데 실질적 풀이는 엄청 짧으니까 171130 거르신 분들은 한 번 읽어보시면 좋을 것 같아요 살짝 찾아봤는데 이런 거 안 나온다고 거르신 분들이 몇 분 보여서...
(맨밑에 요약있음)
지금 암산 폼이 너무 좋아서 뭘로 해볼까 찾아보다가
이게 역대 가장 어려웠다고 해서 이걸로 해봤는데, 누구나 풀 수 있는 것 같아서 써보게 됐어요
우선 풀이를 적어보면,
(가)조건은 x=/=a니까 f=~~ 꼴로 정리가 가능해요
(풀이를 바로 떠올리고 한 게 아니라 정보가 없는 f에 대해 정리를 하는 거에요 기본적이고도 중요한 사고라고 생각함)
f는 "(a, 0)부터 g위의 한 점 (x, g(x))까지의 기울기"에 대한 함수임을 알 수 있어요(단, x>a)
이때 조심해야 되는 게 익숙한 대로 g(a)=0으로 처리하면 안 돼요.(f가 x=a+에서 무한대 발산하면 아닐 수 있음) 저도 순간 헷갈려서 (다)조건 보고 뇌정지 왔었는데,,
아무튼 이제 최고차항 계수 -1조건과 (나)조건을 함께 보면,
g가 x=alpha, x=beta에서 같은 접선을 가진다는 걸 알 수 있어요
<-
1. f를 기울기로 가지고 (a, 0)을 지나는 직선은 (a, 0) 오른쪽에서만 그려져요. 헷갈리시면 안 되는 게, f는 '기울기'에요
2. f가 두 지점에서 같은 양의 극댓값을 가진다는 건, 그 직선이 '올라갔다내려갔다'를 2번 한다는 거에요 그것도 우상향으로 가장 가파를 땐 같은 +기울기로!
그럼 g의 두 극대점보다는 왼쪽에 (a, 0)이 있겠져
그럼 M>0니까 g의 계형을 몰라도, 이정도로 그려질 수 있을 거에요
그리고 이런 상황에선, (?)친 g의 일부가 어떻게 생겼든, f가 극대 또는 극소가 되는 x값이 무조건 3개임을 알 수 있어요(alpha, beta, 그리고 대충 (?) 근처에 하나 더)
적어도 (나)조건이 성립하는 한, 3개가 아닌 예시는 잡히지 않아요
근데 (다)조건을 보면, g의 극점은 2개 이하여야 하니, 당연히 3개는 안 되겠죠? 그럼 g와 (?)가 어떻게 생겼는지 대충 보이네요
(직감적으로 위의 경우가 답일 것 같긴 하군요)
이제 사실상 마지막인 게, g의 극점이 3개가 뜨지 않도록만 M값(또는 범위)을 잡아주면 문제가 끝나요.
M에 대한 정보를 어떻게 찾을 수 있을까요?
g에서 f=M일 때의 접선을 뺀 함수를 그려 볼게요 (h)
(alpha, beta는 g와 직선의 접점의 x좌표, 6sqrt(3)은 주어진 조건)
이 함수에 좀 전에 뺐던 직선을 다시 더했을 때, 파란색으로 칠한 변곡점에서의 기울기가 0이상이 되도록하는 게 목표에요
즉, 저 기울기를 m이라고 하면, M+m>=0, 곧 M>=-m입니다. m값만 찾으면 되겠네요!
m값은, 변곡점의 접선의 기울기였어요. 다항함수의 변곡점은, 도함수의 극점에 대응되죠? (원래 변곡점은 이계도함수의 부호변화가 있는 지점이라는 거 참고하셔요)
(삼차함수 비율관계 1:sqrt(3))
그리고 변곡점의 '기울기'는,
그에 대응하는 도함수의 극점의 '함숫값'이에요.
그 말은, m의 값이 h'의 극솟값과 같다는 거에요
이건 이차함수 넓이 공식으로 바로 구할 수 있습니다
미적분의 기본정리에 따라, 정적분은 역도함수의 차로 표현되기 때문이죠
이때 h'이 x축 위의 점을 기준으로 점대칭이므로, 밑넓이 S의 절반이 극솟값이에요. 즉 m=-216이고, 저어어 위에서 언급했듯 M>=-m이므로
M>=216, 답이 216입니다
다 적고 보니까 수2문제네용
엄밀하게 적느라 글이 긴 거지, 실질적으론 푸는 시간 엄청 짧아요 풀이에 식 사실상 하나도 안 나옴
-요약
1. (가)조건에 의해 f는 기울기 함수
2. (나)조건에 의해 f=M일 때 g에서 이중접선임
3. -(h의 왼쪽 변곡점에서의 기울기)보다 M이 크거나 같음
(h는 g-(이중접선))
4. -(h의 왼쪽 변곡점에서의 기울기)는 이차함수(h'') 밑넓이의 절반임
5. M의 최솟값=216
+예전부터 느낀 건데 오르비는 왜 뭐 지울 때마다 화면이 요동을 치나요?ㅠㅠ
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
회원에 의해 삭제된 댓글입니다.좋아요 0
-
고시원은 사람이 살 곳이 못되는듯 이 시간에 1시 50분부터 지금까지 알람 안 끄는 사람만 봐도..
-
저랑 잡담하실분 4
못 잘 거 같음 ㅛ.........
-
공부 0
화났다가 재밌다가 괴롭다가 즐겁다가 힘들다가 신나다가 롤러코스터 상태
-
이해원 제외(이미 품)
-
문학독서언어매체수1수2확통영어정법사문너무지겨워이삶을끝내줘
-
창문열고 잔다.
-
ㄹㅇ 크게 먹으면 두 젓가락 정도 나올 양인 듯.. 좀 아쉽네
-
영하 2도 ㄷ
-
똥 먹어본 사람도
-
으음 9
귓불도 아팠는데 아웃컨츠나 귓바퀴는 무리인걸가... 스트레스받으면 왠지 뚫고싶어지는
-
알파고가 자기 자신이랑 대국 두면서 실력 쌓은 것처럼 나도 매년 오르비 원서철에 나...
-
25LEET 솔로우 경제성장 모형 2311 기초대사량 2211 브레턴우즈 모두 문제...
-
잠의 신이시여 2
나를 잠에 들게 하소서 오늘도 양 세기 해봐야지
-
배 아파 2
잠 늦게 잘 때마다 배가 아파
-
그림 18
굿
-
개인적으로 2311 게딱지와 2211 브레턴우즈의 추론은 결이 같다고 생각 1
둘다 거기서 막 화살표 치고 그런거 보다 지문 예시 끌고와서 처리하는게 훨 나을텐데...
-
예전에는 18시간 안 자는 게 기본이었고 많게는 24시간까지 새는 거 기능했는데...
-
수능 D-7 3
ㄱㄱ
-
고2 10모 빼고 다 1등급인데 듣고 가야할까요? 키스로직만으로 abps체화 할 만 한가요
-
공황장애 극복법 9
과거 생각나거나 지인 마주칠때마다 심장 두군거리고 숨이 안쉬어지는데 어캐...
-
ㅎr 사문만 되면 이제 괜찮은데..
-
문과 선택과목 0
정시 사문세지 조합 어떤가요 윤리 안맞아서 세지로 갈아타려하는데 흔한 조합인가요?...
-
7할 정도는 아기세 알 듯
-
我是他非 厚顔無恥 疊疊山中 2020년 그대로 복사에 붙여넣기 하면 됨.
-
떡밥존X뿌려
-
이런 의미 없는 생각 동경만 한다 사랑만 한다 ?
-
원래 조회수 30부터가 와이파이 한 줄이었던 거 같은디 어느 순간부터 갑자기 바뀜
-
헉 8
목아프다..설마 감긴가 안되는데 옯끼야아아아악
-
오르비 하니까 시간 훅훅 가네 다들 주무셔요
-
곁들일 편의점 음식 추천 좀 컵라면 하나만 먹으면 죽는 병에 걸렸어요
-
순식간에 빨간색 와이파이 달성 가능 ㅋㅋㅋㅋㅋ
-
역시 사람은 8
힐링물을 봐야해
-
내 몸 만졌을 때 그립감이 다름
-
비활타다가 너무 심심해서 어제 비활 풀었는데 풀었는데 할게 없네
-
아이고난 얘는! 7
괜찮아!! 지나고 보면 별 거 아니니까 툭툭 털고 일어나!
-
재앙아님..?
-
누군가는 웃고 누군가는 울겠네
-
아니 근데 이거 이감하다보니까 문학에서 눈 썩는 느낌인데 2
내가 못해진 건지 이감 문학이 X같은건지 모르겠네
-
이번 한 달 동안 한자 안 외우면 손으로 장을 비빈다. 7
지지기는 무섭고. 어문회2급따긴해야하는데
-
왜 안 보내줌??
-
今我異昨我 6
오늘의 나는 어제의 나와 다르다 ..... 그 말이 옳을까?
-
좀 할 일 제 때 하자.
-
작년 내 합격증 보내달라더니 그걸로 수능부적 만들었농 ㅅㅂㅋㅋㅋㅋㅋㅋㅋ
-
성공은 갑자기 이루어지는 것이 아니라, 반드시 그 원인이 있다
-
수능가서 3등급 가능한건가...
-
아진짜자야하는데 2
아
-
솔직히 디지몬 어드벤처는 명작이라고 생각해요