Residual Finiteness
게시글 주소: https://wwww.orbi.kr/00069377875
Residually finite: For any nontrivial element $g\in G$, there is a subgroup $G_1$ of finite index in $G$ which does not contain $g$.
Locally extended residually finite (LERF): If for each finitely generated subgroup $H$ of $G$, for any element $g\in G - H$, there is a subgroup $G_1$ of finite index in $G$ which contains $H$ but not $g$.
Theorem A. Let $X$ be a manifold possibly with boundary with a regular covering $\tilde{X}$ and covering group $G$. Then TFAE:
(1) $G$ is residually finite.
(2) If $C\subset\tilde{X}$ is a compact subset, then the projection map $\tilde{X}\to X$ factors through a finite covering $X_1$ of $X$ such that $C$ projects by a homeomorphism into $X_1$.
Theorem B. Let $X$ be a manifold possibly with boundary with a regular covering $\tilde{X}$ and a covering group $G$. Then TFAE:
(1) $G$ is LERF.
(2) Given a finitely generated subgroup $H$ of $G$ and a compact subset $C$ of $\tilde{X}/H$, there is a finite covering $X_1$ of $X$ such that the projection $\tilde{X}/H\to X$ factors through $X_1$ and $C$ projects homeomorphically into $X_1$.
위의 theorem B는 특히 중요한데, 만약 $\pi_1(M)$이 surface group $H$를 포함하고 있고, LERF라면, $M$이 virtually Haken임을 내포한다. 다시 말해서, surface group을 representing하는 immersed surface in $M$이 적절한 finite covering을 취하면, embedding으로 lift가 된다는 것.
자명하게 LERF는 RF보다 강한 조건이다. Theorem A,B는 LERF와 RF의 기하학적인 의미를 담고 있다. 보통 해석할 때, $\tilde{X}$는 universal cover를 염두해둔다. 이 경우, Residual finiteness는 다음과 같이 해석된다:
$\pi_1(X)$ is residually finite if and only if for every compact subset $C$ of $\tilde{X}$, there is some finite cover $X'\to X$ with $C$ projects homeomorphically.
만약 $X$에 어떤 geometric structure가 있다고 한다면, $X$의 sequence of finite covering $\tilde{X}_i$가 있어서, 점점더 그것의 universal cover $\tilde{X}$에 가까워진다, 수학적으로는 Gromov-Hausdorff converge한다고 볼 수 있다. Hyperbolic 3-manifold에서는 이것을 geometric convergence라고 부른다.
Examples
1. $M$: a Seifert fibered 3-manifold then $\pi_1(M)$ is LERF.
2. $M$: a hyperbolic 3-manifold then $\pi_1(M)$ is LERF. (Virtual Haken/Fibered Conjecture)
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
이건좀
-
짜피 고대 서강 성균관 밖에 안 썼는데.. 여기에서는 납치 당하고 싶어서요
-
얼버기 1
늦버기...
-
시작
-
강대x 2컷~2컷+8정도 나옴
-
오늘도 파이팅.
-
(주관적)...
-
얼버기상 1
오늘도 또! 버러지 같이 시간을 낭비하겠군
-
에구궁 졸려 1
준비 갈 완료
-
하면 얼어죽을듯
-
하늘을 찌르는 SOXL + 트럼프 밈주 + 환율 폭등 1000만원으로 하루만에...
-
기하는 풀이 없는 것 같아서 올려봅니다. 28 빼고 시간재고 푼 풀이고 28은...
-
얼버기 1
앞줄 어느방은 2시부터 4시간동안 알람을 안꺼??
-
반팔 입어야징
-
얼버기 7
후후후
-
尹대통령, 오늘 대국민 담화·회견…대통령실 "모든 사안 설명" 1
국정쇄신 방안·명태균 논란·김여사 문제 등에 직접 답변 (서울=연합뉴스) 곽민서...
-
자세한 것은 눈 좀 붙이고 수업 끝난 후에 공지사항 올리겠음요. 공지사항 올라가면...
-
와 2도야 미친 2
ㄹㅇ 세종대왕님인가 ㅈㄴ 춥네
-
독서 사회,경제:아웃소싱->국제적으로(오프쇼어링)+경상수지...
-
생1에서 윤도영 아니면 만점 힘들 정도로 절대적임?
-
일탈행위의 발생과정에서 나타나는 상호작용에 주목하는가? 에 맞는게 차별적교제이론...
-
1. 대망의 첫 수능 이후 의과대학 성적과 수능 성적의 상관계수를 내본 논문의...
-
꼼꼼히 한다 하면 개념 얼마나 걸려요..???
-
얼버잠 1
다들 평안한 밤 되십시오. 소등하겠슴다.
-
책 왕창 빌리고 샀는데 시간 순삭이넴 글고 안 유명한데 재밌는 책 발견하면 좀 짜릿함ㅎ
-
진짜 집에 아직도 있는게 소름이넹 ㅋㅋㅋ
-
A 소유의 □□ 상가를 임차하여 창고업을 운영하고 있는 B는 미성년자 갑을 적법한...
-
얼버기 1
아파ㅓ 일찍자고 이제 일남
-
최저러라서 마지막 일주일동안 생윤 커리 하나만 더 듣고 마무리하고싶은데 뭘 하면...
-
인생이 X같아서 많이 들었음
-
세지 정법 둘 다 문제스타일이 굉장히 물화생지윤리사문역사에 비해 마음에 듦 ㅋㅋ
-
쿠팡 몰빵 4
누가 이기나보자
-
예비 고3입니다 4
지금 현재 10모 백분위 대략 99 초반이 떳는데 고3되면 어느정도 되나요?
-
수능 현장에서 볼 생명, 언매, 수학 개념 정리 자료 있을까요? 0
종이 몇장 정도 분량으로 생명이랑 언매, 수학만 있으면 될 듯 한데 혹시 이런 자료...
-
점수가 맨틀 뚫고 내핵까지 들어가는데 그냥 기출 복습이나 할까요.. ㅠㅠ
-
고양이 아니면 나한테 말걸지 말아줘
-
목표대학도 학과도 딱히 없는데 수학이 오를것같은데 자꾸 안오르고 국어성적이 아깝고
-
저랑 잡담하실분 4
못 잘 거 같음 ㅛ.........
-
공부 0
화났다가 재밌다가 괴롭다가 즐겁다가 힘들다가 신나다가 롤러코스터 상태
-
이해원 제외(이미 품)
-
문학독서언어매체수1수2확통영어정법사문너무지겨워이삶을끝내줘
-
창문열고 잔다.
-
ㄹㅇ 크게 먹으면 두 젓가락 정도 나올 양인 듯.. 좀 아쉽네
-
영하 2도 ㄷ
-
똥 먹어본 사람도
-
으음 9
귓불도 아팠는데 아웃컨츠나 귓바퀴는 무리인걸가... 스트레스받으면 왠지 뚫고싶어지는
-
25LEET 솔로우 경제성장 모형 2311 기초대사량 2211 브레턴우즈 모두 문제...
-
잠의 신이시여 2
나를 잠에 들게 하소서 오늘도 양 세기 해봐야지
우익수