함수추론 자작문제
게시글 주소: https://wwww.orbi.kr/00070662243
계산은 많지 않지만 생각을 많이 해봐야 하는 문제 같습니다 개형만 찾으면 답은 바로 쓸 수 있으니 편하게 풀어보시면 좋을 것 같습니다 의도한 난이도는 22번 정도
(+)오류 있습니다..ㅠ 아래 조건을 추가해서 풀어주세요 죄송합니다
(나) (단, 두 실수 t1, t2는 -2도 아니고 2도 아니다.)
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
고쟁이까지 풀렸던 학원쌤이 참 고마움 ^^..
-
다들 어떡하실건가요 댓좀
-
ㅇㅇ?
-
서강대야……
-
그땐 좌극한 우극한 그래프 문제도 못 풀었음 ㅋㅋㅋ
-
난 걍 일상얘기해야 ㄷ댓글을 달아주는군
-
먹던 교촌도 있고 라면이랑 불닭소스도 있고 모짜렐라,콜라,참치캔,김도 있으니...
-
오늘 수2 미분배웠음 12
전혀 무슨말인지 모르겠음! 벌써부터 이러는거 정상지능 맞음? 참고로 필자는 상대적 이과라는것.
-
48만원짜리 백화점에서 눈돌아가서 샀는데 뽕 빠지고 보니까 금색이 너무 튀는거 같음..
-
가보자
-
물론 하는 것 자체는 자유지만 사회적 불이익이 클까요? 어느 집단에서는 문신 보이면 바로 컷하려나요
-
뭐가 더 어렵나요 전 후자가 더 어려운거같은데 오답률은 241130이 훨씬...
-
아직돼지지만 전에 비해서는 확실히 ㅋㅋ 열심히해야지
-
하루에 국수영탐탐 조금씩 다 하는 것보다 한두달 정도 한두과목에 올인하는게...
-
자이스토리 기준 별0개->별1개2회독->별2개 3회독->1등급 마스터로 하면 굿..? 피드백 좀
-
올해 3학년, 백분위 90~94 (고12기준) 개념은 있지만.. 행동강령이나 태도...
-
26수능 응시하는데 아직도 탐구 못 정한 사람이 있다?! 13
그게 접니다 예예
-
근데 과외가 8
이렇게 구하기 쉬운건가여? 뭐지 뭔가 바로바로 필요할때 잡히는 느낌인데
-
점공 정리해보니 추합도 14명 도네 정병존 ㅋㅋ
-
너무 자존심이 상하는데 사실 그럼 걔네 놀때조차 그냥 훨씬 많이 공부하고 그래서...
-
G가 뭐예요? 얘는 어디서 튀어나온거야 ㅋㅋ
-
미확 만표차가 10점은 났을것.
-
과외하는데 1
ㄹㅇ 과외해보면 난 노베도 아니란걸 깨달을 수 있음......
-
이원준쌤 브레인 크래커가 많이 어렵나요? RNP 건너뛰고 브래인크래커 바로 가려고 하는데 괜찮겠죠
-
정훈구 화1 2026교재 사실분 개좋은 사은품도 드려요 5
2026판 개념의정답 개념본책, 워크북,워크북답지, 암기노트 구성입니다 본책만...
-
몇개 틀리시나요??
-
우웅하네 7
우웅
-
운동완뇨 2
-
로스쿨 하나만 보고 경영 가는거 너무 무모한가요?? 6
법조계에 크게 꿈이 있진 않지만 매우 흥미로운 직업으로 생각중입니다. 대학가도...
-
특정성격 혐오있는데 12
여기에도 많은 성격이라 함부러 말 못하겠다. 딱보면 바로 알 수있어서 피하기...
-
중대 창의ict 0
창의 ict 예비 700번대 극극초 받았는데 아무래도 힘들겟죠.. 중대 기계...
-
현우진은 음수일 순 없다하는데 지식인이나 다른곳 찾아보면 간혹 음수가 될 수 있다...
-
고3현역 킬러문제 푸는 스킬들만 듣고 싶은데 철두철미 안듣고 (개념은 탄탄하다고...
-
요즘 너무 생각이 많네요..지난날이 너무 후회됩니다 지금 이시간도 나중에...
-
하루가48시간임?
-
영어듣기 4
이제 고3이고 영어 듣기 꼭 2~3개씩 틀리는데 공부해야하죠? 해야한다면 문제집 추천해주세여
-
임대료는 개비싼데 제일 문제는 대형마트 영업시간에 오픈시간을 맞춰줘야함 보통...
-
일요일에 누구 만나고와서 본교재 못(안) 풀고 강의들었는데 너무 빡세다 과제는 미리미리
-
형제간에 키,몸무게보다 소득의 상관성이 더 높대요 예를들어 형이 키가 크고...
-
롤 브론즈됐다 1
저주받은계정 골드보내기 시작
-
수능에도 딱히 도움 안되는것같네
-
integral k to 4 g(t)dt>=0 임을 시험장에서 발견할 수 있는...
-
옥씨부인전 많 관 부 대학관련 얘기 아닌걸로 제가 이리 신나는 모습을 못보셨을거임
-
하 수학킹들은 어릴때부터 이런과정들 겪은거겠지
-
대학생활 기대하지마라 1. 인문계 진학 일단 학점은 4.5에 수렴해야 하며 인턴,...
-
사주 봐주고 북치고 장구치고 하는 것도 '음악치료'로 건보공단에서 지원해주겠네요?
-
깔깔깔
-
다 남자였는데 이게 제주변만 남자의 비율이 높은건가요 아니면 수학 황들중에 남자의 비율이 높은걸까요
개어렵네 ㄷㄷ
안어려워용..
옹 이건 풀어봐야지 잠만녀
제발 풀이좀 알려주세요ㅜㅜ
오류가 있어서 죄송합니다..ㅠ 확인하시고 다시 풀어보실래요?
크악..ㅜㅜ
현역이신가요?
올해 수능 쳤습니다!
오,,,그렇군요
수학 양식 같은 거 완벽하게 숙지하신 게 신기하네요
문항 제작 많이 연습해 두세요! 조만간 제안 하나를 드릴 수도 있을 것 같아요
오우 말씀만으로도 감사합니다 :) 언제든 맡겨주십쇼!
아 문제 잘못봤네요 죄송합니다!
이거 정답개형이 뭐죠...?
234 맞나요?
아니네요 흠
오류 수정한 것에 따르면 맞습니다! 제가 의도한 답은 이거에요..ㅠ
아 -2가 비어서 다시 푸는데 그걸 빼야 했군요
아닙니다.. 시간 낭비하게 해서 너무 죄송합니다ㅠ 부족한 문제 풀어주셔서 감사합니다!
1. g(x) 좌우극한 다르려면 그지점에서 f(x)와 x의 대소 바뀌어야함 and f(x)와 x의 대소가 바뀌면 x가 0이 아닐때 g(x) 좌우극한 다름 -> 'x가 0이 아닐때 g(x) 극한 not 존재'와 '0이 아닌 x에서 f(x)의 대소변화'는 서로 필요충분조건, 따라서 x=0을 제외한 f(x)에서 x=4에서만 대소변화
2. f(x)-x는 사차함수이므로 부호변화가 짝수개 있어야함 -> x=0에서도 f(x)와 x 대소변화 (x=0과 x=4에서만 f(x)와 x의 대소변화)
3. f(x)의 최고차항 계수가 양수일 때: 0 f(2)<0
4. h(inf)=2이므로 h(x)<3
5. f(2)<0이고 f(4)=4이므로 20 인 x 존재 and 같은 논리로 f(0)=0이므로 0 0(+) 지점 존재 = f(x) 극소 존재
6. 이 극솟값이 양수면 같은 논리로 다른 극솟값 또 존재 -> 극소의 개수는 유한하므로 음의 극솟값 존재
7. g(x)=-f(x) (0 이 양의 극댓값을 c라고 하면, g(-inf)=inf고 g(0)=0이므로 g(x)=c인 x<0 존재, 따라서 lim x->c- h(x) >=3 -> 모순 -> 따라서 f(x)의 최고차항 계수는 음수
8. f(x)의 최고차항 계수가 음수: 0x>0이고 반대로 x<0, x>4에서 g(x)=-f(x)
9. g(0)=0이고 g(4)=4이므로 04에서 f(x)=0인 x 존재 -> 이 x를 a라고 하면 g(a)=0이고 g(inf)=inf이므로 x>a에서 g(x)=c인 x 존재
11. 따라서 g(x)=c의 실근은 최소 3개이므로 h(c)>=3 -> 모순
12. f(x)의 최고차항 계수를 양수라고 가정해도 모순, 음수라고 가정해도 모순
아 기껏 타이핑했는데 텍스트 깨졌네...
맞나요!!
맞습니다! 저 문제 자체는 모순입니다.. 오류 수정했는데 다시 한번 풀어봐주실래요 죄송합니다..
제발정답좀요 ㅠㅠ 못자겠어요
오류 확인하셨나요?
넵..
그래프 개형입니다!
아 저렇게 g(2)만 톡 튀어나와 있으면 되는구나..ㅠㅠ 위로 볼록이 생기면 안되는데 g(2)>0이려면 f(2)<0이고 그럼 위로 볼록이 무조건 생기는데??? 로 계속 헤맸어요 수능 공부할때도 이런거에 취약했던... 그래서 뭔가 y=x에 한번 접하지않을까 생각했는데 저걸 안해봤네요
저런 디테일 찾는 게 쉽지는 않죠 ㅠ 풀어주셔서 감사합니다!
ㅋㅋㅋㅋㅋㅋ제가 죄송합니다ㅜㅜ
중근갖는걸 생각못해서 한참 해맸네요
닫힌부등호인지 열린부등호인지 잘봐야하는데 감다떨어졋네
조건 자체에 모순이 있기도 했으니.. 더 힘드셨을 것 같습니다 모순 찾으신거 다 적어주시고 정말 감사합니다!
f(x) = 1/16 x(x-2)²(x-4)+x
f(-6) = 234