회원에 의해 삭제된 글입니다.
게시글 주소: https://wwww.orbi.kr/00070803811
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
설경 가고싶다 5
-
정보) 현재 난리난 테 무 x 네이버페이 대란 요약.jpg 1
https://xurl.es/4stnb
-
듣는맛이 있어
-
통통이들이랑 똑같이 공통 다맞추고 미적 23-27다맞췄는데 2등급 ㅋㅋㅋ 솔직히...
-
한완수로 공부… 0
확통개념 한완수로만 해도 괜찮나요? 세젤쉬로 뭐배우는지 정리하고 한완수로 혼자...
-
통통이로 바꿀까요 공통2 미적4 나갔습니다 목표는 서울대요
-
특히 현역 최저러위주로... 내년에 화1이랑은 선택자수 비벼질거같음ㅋㅋ 화1 강준호...
-
.
-
과탐가산 20퍼 박았으면 좋겠음 ㅅㅂ 사탐으로 여기이상가는건 아니지 이건 아니야
-
안쓰긴했는데 제가 4칸 꼴찌였는데 점공계산기상 추합권이네
-
앞으로 국어는 어렵지 않고 항상 쉽게 나올까요?
-
그러하다
-
Wolf) 올해는 다르...지? ?? | 2025 시즌 오프닝 하이라이트 0
??? : 잘못된 협곡의 정상화
-
저번주 토욜부터 6
집에만 박혀있었야요
-
기 상 16
예이
-
칼럼이나 좀 찌끄려볼까 근데 이게 볼 사람이 있나 싶네
-
작수 3입니다 화작미적사탐이라서 지금은 수학에 쓸 시간이 많은 것 같습니다 이미지...
-
옛날 기출 노래와 이야기 이런 건 현장에서 만나면 진짜 빡세겠다 2
타 선지 중에 좀 더 확실한 걸로 답 내는 문제인데 5번 선지를 현장에서 아니라고...
-
작년 수능 1등급 받았습니다. (인증 가능) 단기간에 일등급 받은 케이스라...
-
모킹버드 같은데서 문제풀면 코인 같은거 받는 시스템 만들어서 수학황 과학황 국어황...
-
2025 수능 1등급 받았습니다. (인증 가능) 단기간에 일등급 받은 케이스라...
-
1학기엔 3학점만 듣고 2학기엔 아예 휴학할 건데 시간표도 어떻게 짜야할 지도...
-
생윤 vs 사문 5
사탐런하기에 뭐가 더 나을까요? 암기 잘한다 = 생윤 계산 잘한다 = 사문 걍 이건가요?
-
학교에서 친구가 없어서 쉽게 안 됨
-
20만원이 부족한데?
-
과외알바를 생각하시는 분들을 위한 매뉴얼&팁입니다. 미리 하나 장만해두세요~~...
-
라는 부담스러운 말은 하면 안되겠죠? 선을 지키는 클린유저가 됩시다.
-
메모 0
어삼쉬사 수1, 수2 각각 다 끝내기 1월까지 아이디어 수1, 수2 다 끝내기 2월...
-
삼수vs삼반수 1
지금 사범대 과학계열 학교 다니고 있는 학생입니다. 작년 수능을 공부를 안하고...
-
25수능입니다.
-
사4=과1 5
제발 사탐황들한테 깝치지마셈 과탐은 그냥 발로 풀어도 다 맞춘다 내가 손으로 풀어서...
-
3등급일수도 있음?
-
고양이 보고가요 19
-
외박 후 복귀 0
운동 조지고 ktx 타러 하 가기싫다
-
한지 재밌긴한데 0
한번 공부 안하면 계속 놓게되더라 걍 내 성향 문제일수도
-
아직 안죽었어요 3
45일까지 괜찮댔어
-
한완수로만 해도 아무문제 없을까요?? 아니면 세젤쉬같은 컴팩트한 강의와 병행할까요?...
-
점심여캐투척 8
음역시귀엽군
-
100점이 목표인데 풀커리랍시고 쉬운 n제 굳이굳이 풀기 ->쉬운 문제는 어려운...
-
91 99 2 87 99 가려면 얼마만큼 올려야하나요??? 전반적으로 올린다고 봤을때
-
내려쳐질때마다 기분이좋아요 내가선택과목선택영역1등급 개꿀벌임이증명되는느낌임 흐흐흐흐흐흐
-
걍 기출 벅벅 하니까 고1, 2 모고는 1 뜨길래 내 방법이 맞는 건 줄.. 근데...
-
원래 이런가요? 기출 처음 푸는데 4점짜리 30문제가지고 며칠씩 붙잡고 있네요ㅠㅠ...
-
그게 나야 바 둠바 두비두밥~ ^^
-
텝스 준비 방법 4
텝스 뭐 준비할게 있을까요... 영어 2라 기영은 피해야되는데
-
모든 과탐한테 긁히는 건 아니고 나보다 점수 확연히 낮은데 과4사1이다 개념량 반도...
-
증명사진은 그냥 폰에 저장되잇는거 보내면 될가요? 대학교를 이번에 가는데 전공 및...
-
언미물1지1 입니다. 6모 41231 9모 13233 수능 2(89) 1(97) 2...
-
과랑 성적 들고 오세요 메디컬+한약 제외 다 궁예 가능 * 개인의 의견일 뿐이므로 맹신 X
-
피파 5천억 팀 2
추천좀요
다음곡선 ~~가 위로 볼록한 구간에 속하는 실수 x가 아닌것은? 이랑
곡선~~~이 실수 전체의 구간에서 아래로 볼록할때
이런 두문제가 있는데 첫번ㅁ재ㅜ 문제풀때는 f"(x)과 0 관계를 볼때 =이 안붙고 두번째 문제 풀때는 =이 붙는 이유를 모르겠어요ㅠㅠ 두 문제 질문에서 뭐가 다른게 있나요?
질문이 잘 이해가 안됩니다
앗 다른분께도 질문했던거 복붙해서 쓰느라 그러네요ㅠㅠ
지금 위의 저 사진처럼 되는거까지는 이해가 가는데
문제 중에 873이랑 874 질문 차이를 잘 모르겠어요 둘다 위로볼록 아래로 볼록 물어보는거같은데 873번은 볼록한 구간이 이미 정해진 상태고 874는 전체 실수여서 그런겅가요? 어디에서 차이를 보고 무슨 조건을 써서 풀어야할지 감이안잡혀요ㅠㅜㅡㅠ
제 능력이 안되서 말로 설명하기가 힘드네요
개념책을 같이 놓고 본인이 깊게 생각해보세요, 그리고 안된다면 다른분께 여쭤보세요
?? 그 두개 동치 아니었음? 헐
f'' > 0
아래로 볼록
f'' ≥ 0
모두 동치 아니에요
맨위 맨아래는 당연히 다르게 생겼으니까 다른데 아볼이랑은 각각 뭔차이죠?
찾아보니 직선도 볼록이라고 볼 수 있네요.. 아래 두개는 동치일거 같습니다
예를 들어, f(x)가 상수함수면 f''는 0이지만 볼록성을 묻기는 애매하죠
이런문제는 수능에는 안나올거 같아요 그냥 두개 동치라고 생각하셔도 될듯
아 뭔지 알겠어요 감삼다 ㅎㅇㅌ
저도 님 덕분에 좀 자세히 찾아보게 되었는데 볼록(convex)이 두종류가 있음
볼록 / 강한 볼록
여기서 직선은 볼록함수기는 하지만 강한 볼록은 아님. 마치 상수함수가 단조증가이지만 강한 증가함수는 아니듯이
그리고 수능에서 다루는 볼록성은 강볼록을 의미함. 따라서 상수함수 / 일차함수는 "수능 범위"에선 위로 볼록하지도, 아래로 볼록하지도 않음
영어로 된 용어들을 제가 한글로 바꾼거라 틀린 용어가 있을수도 있어요