미적분 자작문제
게시글 주소: https://wwww.orbi.kr/0008204438
갑자기 또 발상이 떠올라서 만들었네요. 마지막에 적분을 하는 발상은 문과가 할 수 없는 부분이지만 나머지 부분은 문과 분들도 하실 수 있으니 많은 지적 부탁드려요..
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
컴공 인공지능 4
컴공 인공지능은 코딩 무조건 배우는거죠? 코딩은 저랑 안 맞는데 높공이여도 버리는게 맞겟죠;;
-
눈막귀막으로 살았어서 대체 터진다는게 어떤의미임? 문과계열? 이과계열? 왜?????...
-
환급 0
대성 환급 체점이랑 모의지원만 해두면 되나요?? 환급 신청서는 나중에 따로 공지...
-
일단 4050 남자분들은 오지게 좋아하심
-
10이랑 서로소인 어떤 정수 m에 대해서 m의 배수중에는 1로만 이루어진 수가...
-
흐흐 닉변해야지 1
아무도 날 알아볼 수 없도록 (몇천개의똥글을안지우며)
-
오르비의 단점 9
기록을 지우기 어려워요. 의도된 것인지는 모르겠지만 게시글을 지워도 달린 댓글은 안...
-
1학기 다니고 반수할건데 1학기 동안 다니면서.. 학점? 잘 따면 장학금 받나요?
-
힘들다 진짜
-
2024 진학사에서 기준 예측한 성대전전 최종컷 점수 몇 점 이었는지 기억나는 사람? 667?
-
러셀 질문 1
입학할 때 장학혜택 안받고 들어갔는데 중간에 성적 떡상해서 hs나서의치처럼 상위반...
-
뭐가 더 꼴림? 4
-
초상집 분위긴데 지들만 쏘내
-
주변에 교사 많아서 교사에 대해 잘 앎. 생각보다 돈 많이 벌음. 공무원에서 5급...
-
아주대 밑으론 재수한다 생각하고 아주대 2장 썼다가 지금 개쫄림 아주대 사람...
-
오야스미 0
네무루
-
하락장 오는건가 3
요 며칠간 나스닥 계속 빠졌던 것 같은데
-
아주대 숭실대 1
아주대 자전이 날까요 숭실 자전이 날까요 아주는 전자공 숭실은 컴쪽으로 간다면 뭐가낫나요
-
삼수하는건 인간이 아님 16
난 쌩재수도 못해서 그냥 반수 했는데 쌩삼은 진짜 인간의 정신력이 맞나 의심스러움
-
6 9모때 한급사 한줄 찍기로 풀었는데 이거 고쳐야하나요?
-
계정 만들면 팔로우하실분 있음?
-
뭐지? 3
놀다가 들어왔는데 누가 언더우드 긁었어? 걔네 예민한 얘들인데
-
슬슬 자러감 1
다들 아침에 봐요
-
하루종일 졸린데 너무 많이 해서 그런건가
-
과거의 나에게 0
자신감좀 가지라고 말해주고싶다 주변시선신경쓰지말고 당당하게 살라고
-
바닥딸, 스팽킹, 미시녀, 펨돔 . . . 내가 주로 쓴 글들임. 왜 특정당하면 안되는지 알겠징?
-
힐링메타로 설정 ㅈㄴ 조작해서 ㅈㄴ 쉽게
-
모집인원 23명에서 진학사기준 11위임 안정으로 봐도 되는거임? 대형과는 아니라서 뭔가 불안함
-
불행썰 3
고3 8월에 불안장애+강박증+공황 삼종세트 걸리고 재수함
-
불행썰 6
내가 아까올린 투표랑 관련이있음 바깥 화장실에서 응아하고 휴지 없음을 깨달았는데...
-
미장은 무조건 오른다매 10
이게머뇨.. 액땜 개꿀
-
테슬라 숏포지션 6
ㅋㅋㅋ저 위부터 들고 내려옴 415 지지선 깨지고 개같이 추매함 ㅋㅋㅋ 엘리엇...
-
컨설팅에서 연경도 된다 했는데 미쳤다고 고대가고 싶어서 보정관 쓰고 100명 넘게...
-
‘중경외시’에 손이 부들부들떨리고 호흡이 안될정도면 병원을 가서 건대생인데 사람들이...
-
N수 2
하 십
-
항공대 자전 광운대 자전 에리카 전자 셋중 어디가 나을까요?
-
오르비 내꺼임 흐흐
-
12월 전역 상근 입대인데 군수하기에 별로인가요?
-
난 실물파임 11
그래서 안하는거야 응..
-
금수저들 부럽네 0
쩝
-
방금 만취 상태로 들어와서 제 방에 옷 허물 벗어놓고 바닥에 드러누움 나가 임마••
-
진짜 모름
-
레전드 사건 발생이다 진짜
-
서울대 건환공입니다 20명 뽑고 진학사에선 86명 지원이었는데 실지원자 101명...
-
아무도 잡담 안 끔
-
안자면 천만덕 뿌림
-
인강강사분들께 디엠드리면 답장 받기도 하나요 ? 대학수학관련질문이긴한뎅.. .
-
갑자기 오르비까지 번졌네 옛날부터 언더우드 관련 낭설은 ㅈㄴ 심하긴 했음 심지어...
문과 재수생은 풀수 있는 문제인가요??
마지막에 f(x) 적분을 못해서 못 풀겁니다 ㅠ g(x)까지는 문과도 구할 수 있어요
제가 원하는게 g(x)구하는거라 g(x)까지만 구하셔도 답 구한거랑 차이가 없습니다..
g(x)가 0보다 작을때는 구할수 없는 함수가 나오는거 맞나요??
0보다 작을때는 그냥 그래프 개형만 상승인지 하강인지 유추해볼수있고 식은 쓰지 못하는거 같은데.....
g(x)가 0보다 작을때는 함수를 구할 수 없어요~ 그래서 구할 필요 없도록 했구요 그리고 문제 오류 있어서 수정좀 했어요 ㅠㅠ
이런걸 어케만들수있는지 노이해 (의심이아니라 진짜대단하심)
ㅠㅠ 풀어봐주세용..
16인가요?
맞아요~
기출에서 봤던거같은데 다른느낌으로 만드셨네요
진짜 감탄 했습니다 ㅋㅋ
감사합니다 ㅎㅎ
문제엄청 좋네요ㅎㅎ 단, 부분을 못봐서 좀 헤맷어요ㅋㅋㅋ
ㅎㅎ 좋은 평 감사합니다~
힌트좀
어디까지 하셨는데용?
(가)조건으로 g'(x)가 0보다 크거나 같고
(다)조건으로 g'(x)가 0보다 작거나 같다
따라서 g'(0) = 0이고
(가)조건에 x = 0을 대입하면 f(0)는 0이 아니므로 g(0) = 0
(가)조건에 x = 2를 대입하면 g'(2) = 0
따라서 x가 0보다 크거나 같을때 g(x) = x^4+ax^3-(3a+8)x^2이고
g'(x) = x(x-2)(4x+3a+8)이다. (단, a는 상수)
(-3a-8)/4가 0이나 2가 아닐 경우
x>0인 어떤 실수 x에 대하여 g'(x) < 0 이므로 모순이다.
따라서 (-3a-8)/4 = 0 or 2이고
(-3a-8)/4 = 0일때
0(-3a-8)/4 = 2일때
0a = 16/(-3)이고 0 0이다
(가)조건에 양변을 제곱한후 g(x)로 나누어주면
f(x) = g'(x)/g(x)이고
{ln(g(x))}' = f(x)이므로
f(x)를 1부터 2까지 적분한 값 = lng(2) - lng(1) = ln16/11 = lnk
k = 16/11
11k = 16
좋은 해설입니다 ㅎㅎ
ㄷㄷ 수학전공하시나요? 대단하시네...
g'(x)가 0보다 크거나 같고 g'(0) = 0으로 g (x)의 이계도함수에서 x=0일때 0이다가 성립안하는게 x의 구간이 한정되서 그런가요?
이계도함수는 전혀 의도하질 않아서.. 무슨 의미죠..??
x>0 때 g'(x)>=0일때 g'(0)이 0(도함순의 극솟값)이길래 g''(0)=0으로 성립하는줄 알았는대 (다)조건도 있고 정의역이 전체실수가 아니라서 성립안하네요 완전 잘못풀었습니다 ㅋㅋㅋ
얻어가신게 있길 바랍니다 ㅎㅎ..