미적분1 자작문제
게시글 주소: https://wwww.orbi.kr/0008207957
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
올해 느낀거 2
대부분은 진학사에서 컷만 본다 컷 2점 낮아져서 5칸되는 순간 40명 몰림
-
진짜 써본적이 없음
-
위에 364.00도 그런데 232.00 ???
-
얼버기 3
얼리버드가벌레를잡는다
-
많이 다름요??
-
655 <<< 뭔가 게이같은 느낌. 안정감이 있음
-
ㅆㅂ 낮에 도착하면 상관없는데 저녁배송이거나 주말도착하면 좆된다....
-
새터는 갈 수 있나,,
-
물온도 맞추기->1분 머리->4분 얼굴->2분 몸->5분 닦는거->3분
-
이거 맞아?
-
언제쯤 안정화될까 이미 안정화 된거?? 현역이라 잘 몰루ㅠㅠ
-
점공계산기 1
어디서 다운받는건가요? 진학사에서 하는건 인증받아야한대서 귀찮아서 안할거고 셈퍼님...
-
감읆 못잡겠네에에
-
ㅈㄱㄴ
-
개궁금한데요.
-
중증이네 2
유우카 쨩 사랑해❤️❤️❤️❤️
-
난 그때 자고 있어서 맨날 못본단말야 내게도 볼 기회를 줘
-
간호는 갈 수 있으려나..
-
양치, 머리, 폼 클렌징, 바디워시 한 번에 다 하고 한 번에 물로 씻어서...
-
2026 2강 30분ㅋㅋㅋ
-
원래 공중파 근들갑 자막 재밌게 봤는데 요즘 들어선 너무 꼴보기가 싫어짐
-
70만은 집에서 거리 1km 95만은 집에서 거리 600m 점심은 사먹고 저녁은...
-
하소연 22
어제 인증햇는데 이 잔인한 놈들 ㄱㅁ한번을 안쳐주더라... 다 그냥 이모티콘만...
-
안씻었네 어째 아무리 공부해도 유리천장이 있는거 같더니만
-
서성한 라인 점공 아직 안 들어왔으면 보통 허순가요? 아니면 널널해서 안 들어온 건가요?
-
커서 뭐하고 살지 10
문과는 전문직이나 고시가 답인가
-
(서울대 합격 / 합격자인증)(스누라이프) 서울대 25학번 단톡방을 소개합니다. 0
안녕하세요. 서울대 커뮤니티 SNULife 오픈챗 준비팀입니다. 서울대 25학번...
-
하루에 2번 씻는데 잘할리가 ㅋㅋ
-
방금 구글링으로 맨유 져지 좀 찾아보니까 바로 추천 뜨네 무섭다ㄷ
-
지독한 혐오 6
-
오수 서울대 ㄱㄴ?
-
나 물리하는데 일주일에 샤워 한번은 함
-
기상.. 19
응..
-
원래 이런사이였나
-
피곤해요 11
너무 미라클 모닝을 해버린걸지두요
-
전 재보니까 15분 내외
-
두번??
-
왜 서울대가 1순위냐 다 ㅅㅂ 메디컬이 왜 뒷전이지
-
누백 2% 이면 국수탐 평백이 어느정도 라고 보면 될까요? 또는 누백 1.5% 라면...
-
전과목 싹다 1컷 받으면 392점임 근데 의대갈라면 거기서 약 12-22점을 더 받아야함
-
윗공대:내 거주지(였던것) 중간공,아랫공:봉구스밥버거가 맛있음 농생대:건물이 엄청...
-
점공 0
셈퍼점공, 0.6공식, 루트공식중에 뭐가 잘맞을까요? 셈퍼공식은 좀 후하게나오는거같아서..
-
진짜 쌩처음인데 앱에서 요청이 와서요 시급 만오천원은 어떨까요??
-
649.** 초반인데 추합으로 합격 될까요.. 쓰고나니 걱정되네요. 점공 얼마정도 일까요.
-
모두 추합 마구마구해서 나까지 오면 좋겠다 ㅎ
-
하긴 어르신들은 고정 시청자시니까
21?
15?
둘다 아녜요..
ㅠㅠ
히익? 3차함수 아녜여?
맞아용
(0,0)에서 만나면서 y= -x랑 접하는거 아니에요?
(라) 조건을 보시면 (0, 0)을 지날 수 없어요..
라 조건이 x가 0보다 같거나 작을때 x값이 커질수록 (0,0)과 이은 기울기가 커진다 아니에요?
제가 알기론 이게 아마 기출에 있었던 것으로 기억을 하는데 (라) 조건은 조금 조작이 필요해요.. 그리고 (0, 0)을 지날 수가 없어용 x2=0 x1=-2 이런것만 대입해봐두요
라 조건에서 x2랑 x1으로 나누면 g(x2)/x2 > g(x1)/x1 아니에요?
네 맞아요 전 그걸 증가함수로 해석하길 바랬던건뎅.. 기울기로 봐도 무방하긴 하겠군요 지금 보니.. 그렇다고 (0, 0)을 지날거란 보장은 없지만용
증가 함수라구여? 감소함수도 되는데요? 오히려 증가함수가 안되는거같은데
g(x)/x가 (x<0)에서 증가함수인걸용..
아 통채로 말씀하신거구나 전 당연히 g(x)만 이야기하시는줄 알았죠
죄송합니다 제가 설명이 모잘랐네요 ㅠㅠ
제가 수학을 못해서 자세힌 모르지만 x2=0 일때랑 x2=/=0 일때랑 자료해석을 다르게 해야하는거같은데 맞아요?
그래야 0,0 못지나가는거랑 감소함수인게 같이 나오는거같은데
x2=/=0이 무슨 의미인질 모르겠네요 ㅠㅠ..
그럼 답 75에요?
X2가 0이 아닐때랑 0일때랑 (라) 조건해석을 다르게 해야하지않나요? 라는 말이에요
그렇게 하고난다음에 마지막에 g(-1)=0 조건이랑 계수 음의 정수 조건으로 부정방정식 비슷하게 풀었는데 맞아요? (0,양수)지나면 (라)조건 위배되서 (0,음수)해서 풀었늗네
네 75 맞아용 x2가 0일때는 x1*x2로 못 나눠주니 대입해서 g(0)<0이라는 것만 밝혀주고 x2가 0이 아닐때는 x1*x2로 나눠서 생각해주는거에요 ㅎ
ㅇㅎ,, 제가 첨에 나눌때 조건파악을 좀잘못했네요 수알못 울고갑니다 광광,,
아니에요 잘하시는데요 ㅎㅎㅎ GOAT..
아녜요 진성 수알못입니다
ㅎㄷㄷ 그럴리가용
이과황님 이런식의 역기만은 옳지 않습니다
역기만이라뇨 ㅠ 전 그럴 능력이 없어용
거의 직감으로 g(x) 삼차함수로 놓고 푸니깐 쉽게 풀리긴 하는데
정석으로 풀려면 어떻게 도출해야 하나요?
g(x)가 4차함수인경우 2차함수인경우 3차함수인경우의 그래프 개형을 생각해서 풀도록 했어요 최고차항 계수도 그래서 줬구요
hx가 역함수 있다는 조건으로 개형추론 정도
f(x) = cx + b라 하자
f(x)의 역함수를 I(x)라 하자
I(x) = (1/c)x - (b/c) 이고
(가) 조건에 의하여
f(x) = cx + b = I(x) = (1/c)x - (b/c) 이므로
(1/c)x - (b/c) = cx + b 이고
c^2 = 1 이고 (b/c) = -b 이다
또한
(나) 와 (다) 조건에 의하여 g(x)는 이차 이상 사차 이하의 다항함수이다
또한
(라) 조건에 의하여 x2=0이라고 할때 g(x2) = g(0) < 0 이다
또한
함수 h(x)가 x=0에서 미분가능하므로
함수 h(x)는 x=0에서 연속이다
따라서
f(0) < 0이고
c=1일때 b=0이므로 f(0) < 0 이라는 조건이 성립할 수 없다
따라서 c= -1이고 b<0이다
따라서 h(x)가 실수 전체의 집합에서 미분가능하고 역함수가 존재하므로
h(x)는 실수 전체의 집합에서 감소해야 한다
따라서 g(x)가 최고차항이 음수인 이차 또는 사차 다항함수일 경우
x<0 인 어떤 실수 x에 대하여 g'(x)>0인 구간이 존재하므로
h(x)가 실수 전체의 집합에서 역함수를 가질 수 없다
따라서 g(x)는 삼차함수이고
g(x)= -x^3 + px^2 + qx + r이다
h(x)가 x=0에서 미분가능하므로
f'(0) = b = g'(0)이고
r=b이므로
g(x)= -x^3 + px^2 + qx + b이다
또한 g(-1) = 1+p-q+b=0이므로
g(x)= -x^3 + px^2 + qx + q - p - 1이고
g'(x) = -3x^2 + 2px + q이다
또한 g'(0) = f'(0) = -1이므로
g'(0)=q=-1이고
g(x)= -x^3 + px^2 - x - p - 2이다
또한
g(0)=-p-2<0이므로
p>-2이고 p는 음의 정수이므로 p=-1이다.
따라서 g(x) = -x^3 - x^2 - x - 1이고 f(x) = -x-1이다.
따라서
h(x)를 -1부터 1까지 적분한 값의 절댓값 = {(g(x)를 -1부터 0까지 적분한 값) + (f(x)를 0부터 1까지 적분한 값)}의 절댓값 = 25/12 = a
이므로
36a = 75
멋진 해설입니다!
자작문제 검색하다가 들어왔어요~
문제는 풀었는데 궁금한게 있어서요 (라) 조건은 g(0)의 부호를 알 수 있는것말고 다른 정보는 도출해낼 수 없나요? 예를들어 평균변화를 대소비교를통해 이계도함수의 부호를 알 수 있는것처럼요~혹시 문제 만드실때 (라)조건에서 다른 의도가 있나 해서 여쭤보아요!
(라)는 g(x)/x가 증가함수인걸 의도했습니다 ㅎ
그렇네요ㅎㅎ문제 너무 좋네요 앞으로 미적분 문제 시간되시면 또 만들어주세요~
ㅎㅎ.. 노력해보겠습니다..